Наследование болезни пуринового и пиримидинового обмена. «Диагностика нарушения обмена пуринов и пиримидинов в крови. Обмен пуриновых оснований

Синдром Леша-Нихана встречается редко (1: 800000 новорожденных), наследование идет по сцепленному с полом рецессивному типу.

Болезнь начинает развиваться в грудном возрасте, проявляясь мышечным гипертонусом, повышенной рефлекторной возбудимостью, олигофренией, склонностью ребенка к самоповреждениям. Высокое содержание мочевой кислоты и ее солей (диагностический признак), несмотря на усиленное выделение их с мочой, приводит к формированию камней в мочевыводящих путях, отложению солей мочевой кислоты в суставах.

Нарушение метаболизма металлов

Примером нарушения минерального обмена может служить расстройство обмена меди.

Болезнь Вильсона-Коновалова . Тип наследования - аутосомно-рецессивный. Популяционная частота не установлена.

Соединения меди играют большую роль в обменных процессах. Ионы меди входят в состав многих ферментов митохондрий, участвующих в реакциях окисления. Заболевание чаще проявляется в школьном возрасте. Первыми симптомами могут быть увеличение печени и селезенки, нарушение функции печени, ЦНС, иногда почек, снижение количества эритроцитов, тромбоцитов и лейкоцитов в крови. Поражение печени сопровождается желтухой, рвотой, постепенно развивается цирроз. Поражения ЦНС сопровождаются снижением интеллекта, изменением поведения, дрожанием рук, нарушением глотания, повышением тонуса мышц.

Наследственные заболевания,

Вызванные нарушением развития органов и тканей.

Муковисцидоз . Тип наследования - аутосомно-рецессивный. Популяционная частота заболевания 1:2500 новорожденных. Это одно из самых распространенных наследственных за­болеваний. Муковисцидоз представляет собой множествен­ные поражения желез внешней секреции, проявляющиеся выделением секретов повышенной вязкости, что ведет к застою слизи в органах (легких, поджелудочной железе и кишечни­ке) и развитию воспалительных процессов.

Ахондроплазия . Тип наследования аутосомно-доминантный. Популяционная частота 1:100000. Ахондроплазия-одна из наследственных болезней костной системы. Она обусловлена аномальным ростом и развитием хрящевой ткани чаще всего в эпифизах трубчатых костей и основании черепа, результатом чего является резкое недоразвитие костей в длину. Характерными признаками заболевания являются низкий рост (120-130 см у взрослых) при сохранении нормальной длины туловища, большой череп с выступающим затылком, за­павшая переносица.

Миодистрофия Дюшенна (МД) - тяжелое наслед­ственное заболевание с повышенной активностью в плазме крови ряда мышечных ферментов. Встречается с частотой 1:3500 новорожденных мальчиков. Наследование сцепленное с полом, рецессивное.

Заболевание начинается в возрасте 3-5 лет, нача­ло заболевания: нарастающая слабость в мышцах бедер и таза с постепенным переходом процесса в икроножные мышцы, мышцы верхнего плечевого пояса, спины, живота и др. Появляется утиная походка. Заболевание неуклонно прогрессирует, дети оказываются прикованными к постели с 10-11-летнего возраста. Имеется тенденция к некоторому снижению умственных способностей. Продол­жительность жизни больных 20-35 лет. Смерть обычно наступает от легочной инфекции или сердечной недоста­точности из-за миокардиодистрофии.

На­рушения свертывающей системы крови.

Гемофилия А - тяжелое наследственное забо­левание, обусловленное дефектом VIII фактором свертывания крови. Встречается с частотой 1: 6500 мальчиков. Тип наследования - сцепленный с полом, рецессивный

Заболевание распознается обычно на 2-3-м году жизни, а в тяжелых случаях - при рождении (кровотече­ния из пупочного канатика, под- и внутрикожные крово­излияния). Для заболевания характерен гематомный тип кровоточивости. Преобладают кровоизлияния в крупные суставы конечностей (коленные, локтевые, голеностопные), подкожные, внутри- и межмышечные гематомы, кро­вотечения при травмах и хирургических вмешательствах, наличие крови в моче. Поступление крови в полость сус­тавов приводит к развитию стойкой тугоподвижности из-за остеоартрозов (развитие соединительной ткани в сус­тавах).

Гемофилия В - тяжелое наследственное забо­левание, обусловленное снижением активности IX факто­ра свертывания крови. Популяционная частота не уста­новлена. Тип наследования -. сцепленный с полом, ре­цессивный. Ген картирован Xq27. Клинические проявле­ния заболевания сходны с таковыми при гемофилии А.

Гемоглобинопатии

Наиболее известной формой аномальных гемоглобинов является серповидно-клеточная анемия. У гомозигот эрит­роциты приобретают серповидную форму. Гетерозиготы в обычных условиях клинически здоровы.

Хромосомные болезни человека

Хромосомные болезни - это группа заболеваний, вызываемых изменениями числа (геномные мутации) или структуры (хромосомные аберрации) хромосом, видимы­ми в световой микроскоп.

Хромосомные аномалии могут возникать и в процессе эмбрионального развития при дроблении зиготы.

В основе хромосомных болезней лежат синдромы, свя­занные с нарушением плоидности, изменениями числа хро­мосом или нарушением их структуры.

Хромосомные болезни встречаются довольно часто. Частота хромосом­ных болезней у живорожденных детей составляет при­мерно 2,4 случая на 1000 родившихся. Большинство хромосомных аномалий (полиплоидии, гаплоидии, три­сомий и моносомии по первым парам крупных хромосом) являются несовместимыми с жизнью. Такие эмбрионы или плоды элиминируются из организма матери на ранних или более поздних сроках беременности.

Хромосомные болезни, связанные с аномалиями аутосом

Трисомии

Наиболее часто у человека встречаютсятрисомии по 13-й, 18-й и 21-й паре хромосом.

Синдром Патау (синдром трисомий 13) встреча­ется с частотой 1: 6000.

Дети с синдромом Патау рождаются с массой тела зна­чительно ниже нормы(2500 г). У них наблюдается уме­ренная микроцефалия, недоразвитие различных отделов ЦНС, низкий скошенный лоб; суженные глазные щели, расстояние между которыми уменьшено; микрофтальмия, помутнение роговицы, запавшее переносье, широкое ос­нование носа, широко расположенные и деформирован­ные ушные раковины. Одним из наиболее типичных признаков этого синдрома является двухсторонняя расщелина верхней губы и неба. Отмечаются аномалии опорно-двигательного аппарата (по­лидактилия) и короткая шея. У новорожденных встречаются пороки развития сердца, поджелудочной железы, почки увеличены. Дети с синдромом Патау живут недолго. Все выжившие дети с синдромом Патау-глубокие идиоты.

Синдром Эдвардса (синдром трисомии 18) встре­чается с частотой примерно 1:1000. Дети с трисомией 18 чаще рождаются у пожилых матерей. Для женщин старше 45-ти лет риск родить больного ребенка составляет 0,7%.

Синдром Эдвардса у девочек встречается значительно чаще, чем у мальчиков, что связано, возможно, с большей жизнестойкостью женского организма. Наиболее часто отмечаются аномалии мозгового черепа и лица. Изменяется форма черепа, нижняя челюсть и рот маленькие, глазные щели узкие и короткие. Ушные раковины деформированы, расположены низко; наружный слуховой проход сужен, иногда отсутствует. Грудная клетка широкая и короткая. В 80% случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка). Отмечаются пороки сердца, головного мозга. Продолжительность жизни детей с синдромом Эдвардса невелика: 60% детей умирают до 3 месяцев; до года доживает лишь 1 ребенок из 10. Оставшиеся в живых – глубокие олигофрены.

Синдром Дауна (синдром трисомии 21) - самая частая форма хромосомной патологии у человека: 1:900. Достоверно установлено, что дети с синдромом Дауна чаще рождаются у пожилых родителей. Если возраст отца свыше 48 лет, а матери 41-46 лет, то вероятность рождения больного ребенка с синдромом Дауна возрастает до 4,1%.

Дети с синдромом Дауна рождаются с несколько сниженным весом (3167 г). Для больных характерна округлой формы голова с уплощенным затылком, лоб скошен, узкий, лицо плоское. Типичен эпикаит, плоская спинка носа, косой разрез глазных щелей, свет­лые пятна на радужке, толстые губы, утолщенный язык с глубокими бороздами, выступающий изо рта, маленькие недоразвитые низко расположенные ушные раковины, недоразвитая верхняя челюсть, высокое небо, неправильный рост зубов, короткая шея. Из пороков внутренних органов наиболее типичны пороки сердечно-сосудистой системы и органов. Для детей с синдромом Дауна характерна умственная отсталость

Частичные моносомии

Синдром «кошачьего крика» обусловлен:делецией короткого плеча 5-й хромосомы. Дети с этим синдромом рождаются у родителей обычного возраста. Популяционная частота синдрома примерно 1:45000.

Наиболее характерными для синдрома 5р- являются специфический плач («кошачий крик»), умственное и физическое недоразвитие, микроцефалия, низко расположенные, иногда деформированные ушные раковины, лунообразной формы лицо, эпикант, антимонголоидный разрез глазных щелей, косоглазие и гипотония мышц. Иногда наблюдаются аномалий глаз (атрофия зрительного нерва, очаги депигментации сетчатки). Наиболее постоянный признак синдрома - «кошачий крик» - обусловлен изменениями гортани: сужением, мягкостью хрящей, отечностью или необычной складчатостью слизистой, уменьшением надгортанника. Изменения других органов и систем неспецифичны.

Синдром Орбели обусловлен делецией длинного плеча 13-й хромосомы. Популяционная частота синдрома не установлена.

Дети с синдромом Орбели рождаются с низким весом (2200 г). Клинически этот синдром сопровождается аномалиями развития всех систем органов. Характерна микроцефалия, лоб переходит в нос, не образуя носовой вырезки, эпикант, антимонголоидный разрез глаз, широкая спинка носа, высокое небо, низко расположенные деформированные ушные раковины. Весьма характерны признаки поражения глаз (микрофтальмия, иногда анофтальмия, косоглазие, катаракта), опорно-двигательного аппарата, прямой кишки. Часты пороки развития сердца, почек, головного мозга. Для всех детей с синдромом Орбели характерна глубокая олигофрения, возможны потеря сознания, судороги.

Болезни нарушения обмена соединительной ткани: синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина; мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов. Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1.

Наследственные нарушения циркулирующих белков: гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов: болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте: муковисцидоз; непереносимость лактозы и др.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Аномалии числа хромосом: Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом: синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики; синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года; синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом: Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.); полисомия по Х-хромосоме - включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения; полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия: триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин - 69, XXX); почти всегда летальны до рождения.

Хромосомные перестройки: Транслокации - обменные перестройки между негомологичными хромосомами. Делеции - потери участка хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова). Инверсии - повороты участка хромосомы на 180 градусов. Дупликации - удвоения участка хромосомы. Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах. Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25 % приходится на аутосомные трисомии, 46 % - на патологию половых хромосом. Структурные перестройки составляют 10,4 %. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции.


Половое размножение у животных. Образование половых клеток (овогенез и сперматогенез). Осеменение и оплодотворение.

Переход к половому размножению связан с появлением специализированных половых клеток - мужских и женских гамет, в результате слияния которых (оплодотворения) образуется зигота - клетка, из которой развивается новый организм, обладающий новой комбинацией исходных генетических признаков. Половое размножение впервые появилось у простейших, но переход к нему не был связан с немедленной утратой способности к репродукции бесполым путем: ряд животных сохранили ее, обычно чередуя бесполое размножение с половым. Такое чередование поколений наблюдается у некоторых простейших, кишечнополостных и оболочников.

Сперматогене́з - развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза. Сперматозоиды развиваются из клеток-предшественников, которые проходят редукционные деления (деления мейоза) и формируют специализированные структуры (акросома, жгутик и пр.). У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки - гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созревания сперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип - сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.

Овогене́з - развитие женской половой клетки - яйцеклетки (яйца).Во время эмбрионального развития организма гоноциты вселяются в зачаток женской половой гонады (яичника), и всё дальнейшее развитие женских половых клеток происходит в ней.

Оогенез совершается в три этапа, называемых периодами. Период размножения:Попав в яичник, гоноциты становятся оогониями. Оогонии осуществляют период размножения. В этот период оогонии делятся митотическим путем. У позвоночных животных (в том числе у человека) этот процесс происходит только в период эмбрионального развития самки. Период роста: Половые клетки в этом периоде называются ооцитами первого порядка. Они теряют способность к митотическому делению и вступают в профазу I мейоза. В этот период осуществляется рост половых клеток. Период созревания: Созревание ооцита - это процесс последовательного прохождения двух делений мейоза (делений созревания). Как уже говорилось выше, при подготовке к первому делению созревания ооцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост. Из двух делений созревания первое у большинства видов является редукционным, так как именно в ходе этого деления гомологичные хромосомы расходятся по разным клеткам. Таким образом, каждая из разделившихся клеток приобретает половинный (гаплоидный) набор хромосом.

Осеменение и оплодотворение. Процесс осеменения предшествует оплодотворению - слиянию гамет. Различают два способа осеменения (и соответственно оплодотворения): наружное и внутреннее. При наружном осеменении яйца и сперматозоиды выделяются в воду, где сперматозоиды, активно плавая, могут соединиться с яйцом и произвести оплодотворение. Этот способ может быть свойствен только водным (или, как земноводные, сохранившим связь с водной средой) животным. Большую независимость от внешних факторов (в частности, от водной среды) и более экономную продукцию гамет обеспечивает другой способ осеменения - внутреннее, при котором сперматозоиды вводятся непосредственно в женские половые пути. Известен также вариант внутреннего осеменения с помощью сперматофоров - капсул, наполненных сперматозоидами. Такое осеменение называют иногда наружно-внутренним. У саламандры самка захватывает выделенный самцом сперматофор своей клоакой, куда открываются половые протоки; самцы многих паукообразных с помощью своих клешневидных хелицер переносят сперматофор прямо в половое отверстие самки; самец головоногих моллюсков захватывает сперматофор особым видоизмененным щупальцем и переносит его в мантийную полость самки. Но в любом случае оплодотворение происходит внутри тела самки, обычно в яйцеводах. Внутреннее осеменение свойственно ряду водных животных и всем наземным. Оно появилось у плоских червей.

Клиническая генетика. Е.Ф. Давыденкова, И.С. Либерман. Ленинград. «Медицина». 1976 год.

ВЕДУЩИЕ СПЕЦИАЛИСТЫ В ОБЛАСТИ ГЕНЕТИКИ

Амелина Светлана Сергеевна - профессор кафедры по курсу генетики и лабораторной генетики, доктор медицинских наук. Врач генетик высшей квалификационной категории

Дегтерева Елена Валентиновна - ассистент кафедры по курсу генетики и лабораторной генетики, врач-генетик первой категории

Редактор страницы: Крючкова Оксана Александровна

Большой интерес представляет исследование генетических основ широко распространенного обменного заболевания, воз­никающего в результате нарушения метаболизма уратов, - по­дагры. Известно, что подагра часто сочетается с эссенциальной гипертонией, сахарным диабетом, гиперхолестеринемией и ате­росклерозом. Это дает основания для споров между сторонниками полигенного и мономерного наследования этой патологии.

Предполагаются 4 возможных механизма возникновения по­дагры: 1) повышенное поступление пуринов с пищей; 2) повышение их эндогенного образования; 3) дефект выделения с мочой; 4) де­фект экстраренального (через кожу, кишечник) выделения пуринов. McKusick (1968) считает, что, хотя на возникновение подагры влия­ют многие генетические и средовые факторы и хотя уровень моче­вой кислоты сыворотки крови определяется как генетическими, так и негенетическими влияниями, классическая семейная подагра является мономерно наследуемым доминантным заболеванием. Оче­видно, в повышении уровня мочевой кислоты имеет значение как повышенная скорость ее синтеза, так и сниженная скорость выве­дения ее почками. В некоторых семьях с обоими больными роди­телями дети заболевают необычно рано и тяжело, что, вероятно, обусловлено их гомозиготностыо по мутантному гену. В то же время ряд авторов разделяют точку зрения о полигеином наследовании подагры.

Существует также представление, что подагра является высокогетерогенной категорией заболеваний, представляющих со­бой большой биохимический интерес.

Kelley с сотр. (1971), а также ряд других исследователей, нашли, что у некоторых больных подагры имеет место частичная недоста­точность фермента пуринового обмена, необходимого для превра­щения гипоксантина и гуанина в нуклеотиды, гипоксантин-гуанил-фосфорибозил-трансферазы. Этот фермент отличается у боль­ных и гетерозиготных носителей мутантного гена повышенной степенью устойчивости к нагреванию. Это свидетельствует об изменении физических свойств фермента и, следовательно, о структурных изменениях, снижающих энзиматическую актив­ность. Интересно, что недостаточность этого же фермента выявляет­ся при синдроме Lesch - Nyhan, наследуемом рецессивно, сцеплению с Х-хромосомой. У детей с этой патологией наблюдается умственное недоразвитие, спазмирование мышц, насильственное самоповреждение, повышение содержания мочевой кислоты в крови и моче. Последнее обстоятельство является причиной об­разования мочекислых камней с последующим развитием почеч­ной недостаточности.

Нередко у больных развиваются симптомы подагры. Отсюда второе название заболевания; первичная подагра. В эритроцитах и фибробластах больных выявляется резкая недостаточность гипоксантин-фосфорибозил-трансферазы.

Описана повышенная концентрация оксипуринов (гипоксан­тин и ксантин) в цереброспинальной жидкости больных, что поз­воляет предполагать повышенный синтез пуринов в мозгу. В связи с этим допускают возможную роль высокой концентрации окси­пуринов в цереброспинальной жидкости в развитии неврологичес­кого синдрома.

Кроме подагры, к числу наследственных нарушений обмена пуринов и пиримидинов относятся ксантинурия, оротовая аци­дурия и Р-аминоизомасляная ацидурия.

Ксантинурия

Первичным биохимическим дефектом является недостаточ­ность ксантиноксидазы.

Патогенез заболевания связан с блокадой окисления ксантина в мочевую кислоту. Поэтому у больных ксантин, а не мочевая кис­лота является конечным продуктом пуринового обмена. В случаях ксантинурии с повышенным выделением мочевой кислоты, по- видимому, имеет место другой метаболический дефект.

Заболевание наследуется аутосомно-доминантным путем.

Имеющийся метаболический дефект приводит к образованию ксантиновых мочевых камней и обусловливает типичную клини­ческую картину почечнокаменной болезни. В моче больных содер­жится большое количество ксантина при одновременно резком снижении содержания мочевой кислоты в сыворотке крови и в моче. Однако в некоторых случаях ксантинурии у больных выделяет­ся одновременно большое количество мочевой кислоты. Ксантиновые камни редко выявляются рентгенологически. Поэтому диаг­ноз ксантинурии ставится на основании симптомов почечнокамен­ной болезни в сочетании с повышенным содержанием ксантина в моче.

Для лечения применяется диета с ограниченным содержанием пуринов (ограничение мясных продуктов), прием больших коли­честв жидкости и веществ, ощелачивающих мочу.

Оротовая ацидурия

В основе заболевания лежит недостаточность пирофосфорилазы и декарбоксилазы оротидиловой кислоты (соответственно 1,5 и 22% от нормы).

Недостаточность указанных ферментов блокирует превраще­ние оротовой кислоты в уридиловую и цитидиловую кислоты, представляющие собой этапы синтеза пиримидинового кольца. Отсутствие в организме указанных кислот, тормозящих по типу обратной связи синтез оротовой кислоты, обусловливает ее из­быточный синтез.

Описан случай заболевания у пятимесячного мальчика, роди­тели которого состояли в кровном родстве. Заболевание про­явилось клинической картиной тяжелой мегалобластической анемии, сопровождавшейся выделением с мочой большого коли­чества кристаллов оротовой кислоты. У родителей, брата и сестры больного было обнаружено снижение активности пирофосфорилазы и декарбоксилазы оротидиловой кислоты.

У описанного больного диагноз был поставлен на основании обнаружения кристаллов оротовой кислоты в моче.

Улучшения состояния больного удалось добиться с помощью применения гормонов коры надпочечников. Полное излечение на­ступило в результате приема уридиловой и цитидиловой кислот, которые, видимо, по типу отрицательной обратной связи затор­мозили избыточный синтез оротовой кислоты (А. Хорст, 1967).

Отмечается высокая частота гетерозиготности по оротовой ацидурии в населении.

1-аминоизомасляная ацидурия

Первичный биохимический дефект, обусловливающий разви­тие этого заболевания, неизвестен.

В отношении патогенеза (1-аминоизомасляной ацидурии пред­полагают, что повышенное ее выделение может быть обусловлено усиленным распадом ДНК, так как предшественниками 3-аминоизомасляной кислоты являются тимин и валин.

Заболевание наследуется аутосомно-рецессивным путем.

Какая-либо явная клиническая патология при этом метабо­лическом дефекте отсутствует. Некоторые лица ежедневно выде­ляют с мочой 200-300 мг аминоизомасляной кислоты. Процент лиц-выделителей р-аминбизомасляной кислоты довольно высок (10% белого населения США, 30% негров, 40% китайцев и япон­цев).

Синдром Леша-Нихана встречается редко (1: 800000 новорожденных), наследование идет по сцепленному с полом рецессивному типу.

Болезнь начинает развиваться в грудном возрасте, проявляясь мышечным гипертонусом, повышенной рефлекторной возбудимостью, олигофренией, склонностью ребенка к самоповреждениям. Высокое содержание мочевой кислоты и ее солей (диагностический признак), несмотря на усиленное выделение их с мочой, приводит к формированию камней в мочевыводящих путях, отложению солей мочевой кислоты в суставах.

Нарушение метаболизма металлов

Примером нарушения минерального обмена может служить расстройство обмена меди.

Болезнь Вильсона-Коновалова . Тип наследования - аутосомно-рецессивный. Популяционная частота не установлена.

Соединения меди играют большую роль в обменных процессах. Ионы меди входят в состав многих ферментов митохондрий, участвующих в реакциях окисления. Заболевание чаще проявляется в школьном возрасте. Первыми симптомами могут быть увеличение печени и селезенки, нарушение функции печени, ЦНС, иногда почек, снижение количества эритроцитов, тромбоцитов и лейкоцитов в крови. Поражение печени сопровождается желтухой, рвотой, постепенно развивается цирроз. Поражения ЦНС сопровождаются снижением интеллекта, изменением поведения, дрожанием рук, нарушением глотания, повышением тонуса мышц.

Наследственные заболевания, вызванные нарушением развития органов и тканей.

Муковисцидоз . Тип наследования - аутосомно-рецессивный. Популяционная частота заболевания 1:2500 новорожденных. Это одно из самых распространенных наследственных за­болеваний. Муковисцидоз представляет собой множествен­ные поражения желез внешней секреции, проявляющиеся выделением секретов повышенной вязкости, что ведет к застою слизи в органах (легких, поджелудочной железе и кишечни­ке) и развитию воспалительных процессов.

Ахондроплазия . Тип наследования аутосомно-доминантный. Популяционная частота 1:100000. Ахондроплазия-одна из наследственных болезней костной системы. Она обусловлена аномальным ростом и развитием хрящевой ткани чаще всего в эпифизах трубчатых костей и основании черепа, результатом чего является резкое недоразвитие костей в длину. Характерными признаками заболевания являются низкий рост (120-130 см у взрослых) при сохранении нормальной длины туловища, большой череп с выступающим затылком, за­павшая переносица.

Миодистрофия Дюшенна (МД) - тяжелое наслед­ственное заболевание с повышенной активностью в плазме крови ряда мышечных ферментов. Встречается с частотой 1:3500 новорожденных мальчиков. Наследование сцепленное с полом, рецессивное.

Заболевание начинается в возрасте 3-5 лет, нача­ло заболевания: нарастающая слабость в мышцах бедер и таза с постепенным переходом процесса в икроножные мышцы, мышцы верхнего плечевого пояса, спины, живота и др. Появляется утиная походка. Заболевание неуклонно прогрессирует, дети оказываются прикованными к постели с 10-11-летнего возраста. Имеется тенденция к некоторому снижению умственных способностей. Продол­жительность жизни больных 20-35 лет. Смерть обычно наступает от легочной инфекции или сердечной недоста­точности из-за миокардиодистрофии.

Нуклеотидами называются соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты. Примером может служить уридиловая кислота:

В типичном нуклеотиде связь между атомом "N" цикла и первым атомом углерода пентоза - b-N-гликозидная, а связь между остатков фосфорной кислоты и пятым атомом углерода пентозы - сложноэфирная.

1. Классификация нуклеотидов

Нуклеотиды могут быть разделены на классы по нескольким признакам:

а. По характеру входящего в них азотистого основания нуклеотиды могут быть пуринового, пиримидинового, изоаллоксазинового и т.д. рядов.

б. По характеру углевода-пентозы они могут быть рибонуклеотидами (содержат рибозу) или же дезоксирибонуклеотидами (содержат дезоксирибозу). В некоторых синтетических нуклеотидах или нуклеозидах встречается также арабиноза, например, в арабинозилцитозине, используемом в качестве противоопухолевого или противовирусного препарата.

в. По частоте встречаемости в составе нуклеиновых кислот нуклеотиды делятся на главные и минорные. К минорным нуклеотидам относятся те нуклеотиды, количество которых в составе ДНК не превышает 2-3 процентов от их общего числа; на долю минорных нуклеотидов в РНК может приходится до 15-17% от их общего количества. Минорные нуклеотиды образуются в клетках в результате химической модификации главных нуклеотидов; они отличаются от главных нуклеотидов

Или особенностями структуры азотистых оснований (метилированные, гидроксиметилированные, ацетилированные и т.д. производные);

Или особенностями структуры углеводного компонента (как правило, это метилированные производные пентоз);

Или аномальной структурой связи между азотистым основанием и пентозой (так в псевдоуридиловой кислоты присутствует связь, которую можно назвать как b-С5-гликозидную связь). К настоящему времени идентифицировано до пяти десятков различных минорных нуклеотидов.

2.Биологическая роль нуклеотидов

Нуклеотиды выполняют в клетках несколько функций:

во-первых, рибонуклеотиды пуринового или пиримидинового рядов (АМФ, ГМФ,УМФ и ЦМФ и их минорные производные) также как и их дезоксибонуклеотидные аналоги (дАМФ, дГМФ, дТМФ и дЦМФ и их минорные производные) выполняют структурную функцию, являясь мономерными единицами нуклеиновых кислот;

во-вторых, дифосфатные производные мононуклеотидов участвуют во многих метаболических процессах в клетке в качестве активаторов переносчиков различных группировок (Примерами могут служить УДФ-глюкоза, ГДФ-манноза, ЦДФ-холин и др.);

в тертьих, АТФ и ГТФ выступают в клетке как акумуляторы и переносчики энергии, высвобождающейся при биологическом окислении:

в четвертых, НАД+ , НАДФ+ , ФАД, ФМН являются переносчиками восстановительных эквивалентов в клетках (промежуточными переносчиками протонов и электронов);

в пятых, мононуклеотиды выступают в клетках в качестве биорегуляторов. Достаточно вспомнить роль АТФ как аллостерического ингибитора ключевых ферментов ряда метаболических путей (фосфофруктокиназы гликолитического метаболона или цитрансинтазы цикла Кребса):

в шестых, такие соединения как цАМФ или цГМФ выполняют роль мессенджеров или вторых вестников в реализации клеткой внеклеточного регуляторного сигнала (при действии глюкагона на гепатоциты в ускорении мобилизации гликогена играет существенную роль повышение концентрации цАМФ в этих клетках).

3.Усвоение экзогенных нуклеиновых кислот и нуклеотидов

Человек практически не нуждается во внешних источниках нуклеотидов, полностью покрывая свои потребности в этих соединениях за счет эндогенного синтеза при условии, что в клетках имеется необходимое количество исходных соединений для синтеза. Естественно, что проблемы с синтезом таких нуклеотидов как НАД+ или ФАД могут возникнуть при недостаточности в организме витаминов В5 или В2. В дальнейшем мы остановимся лишь на обмене пуриновых и пиримидиновых нуклеотидов.

Нуклеиновые кислоты поступают с пищей в виде нуклеопротеидов, расщепление белковой части которых начинается уже в желудке и завершается в тонком кишечнике. Высвобождающиеся нуклеиновые кислоты расщепляются в тонком кишечнике до мононуклеотидов под действием рибонуклеаз и дезоксирибонуклеаз панкреатического сока. Кроме того, стенкой кишечника выделяются ферменты полинуклеотидазы и фосфодиэстеразы, которые также участвуют в расщеплении нуклеиновых кислот до мононуклеотидов.

Мононуклеотиды в стенку кишечника не всасываются, а подвергаются дальнейшему расщеплению до нуклеоэидов и далее до свободных азотистых оснований, пентоз и фосфорной кислоты под действием нуклеотидаз и фосфатаз кишечной стенки. В стенку кишечника всасываются нуклеозиды, а также перечисленные продукты полного расщепления нуклеотидов; далее они поступают в кровяное русло.

В организме человека большая часть поступивших в кровь пуринов и пиримидинов не используется, а деградирует до конечных продуктов их обмена и выводится из организма. Таким образом, экзогенные нуклеиновые кислоты практически не выступают в качестве поставщиков непосредственных предшественников нуклеотидов в организме человека.

В просвете кишечника, вероятно, под действием его микрофлоры, часть пуриновых нуклеотидов превращается в гипоксантин, ксантин и мочевую кислоту и в таком виде поступают во внутреннюю среду организма.

4. Метаболизм нуклеотидов пиримидинового ряда

Бисинтез нуклеотидов пиримидинового ряда начинается в цитозоле, где при участии цитозольной карбамоилфосфатсинтетазы образуется карбамоилфосфат, причем источником азота для его синтеза является глутамин:

СО2 + Глн + 2АТФ ---> NH2-CO-O-PO3H2 + 2АДФ + Ф + Глу

Дигидрооротовая кислота при участии митохондриального фермента дигидрооротатдегидрогеназы переходит в оротовую кислоту:

В следующей реакции принимает участие фосфорибозилпирофосфат. Он образуется из рибозо-5-фосфата с участием АТФ в ходе реакции, катализируемой ферментом фосфорибозилпирофосфатсинтетазой:

Реакция синтеза фосфорибозилпирофосфата (ФРПФ) не является специфичной для синтеза пиримидиновых нуклеотидов, в ходе этой реакции синтезируется ФРПФ, необходимый для синтеза различных мононуклеотидов.

Оротовая кислота при участии фермента оротат-фосфорибозилтрансферазы переносится на остаток рибозо-5-фосфата с образованием оротидиловой кислоты, которая подвергается декарбоксилированию, в ходе которого образуется первый "настоящий" нуклеотид пиримидинового ряда - уридин-5-монофорная кислота (уридиловая кислота или УМФ). Последняя реакция катализируется оротидилатдекарбоксилазой.

Все остальные нуклеотиды пиримидинового ряда синтезируются из уридиловой кислоты

В ходе синтеза пиримидиновых нуклеотидов используются глутамин, СО2, АТФ, аспартат и ФРПФ. Все эти соединения синтезируются в клетках. Лишь при образовании из дУМФ дезокситимидиловой кислоты используется N5,N10-тетрагидрофолат; это значит, что при недостатке фолиевой кислоты (В9) в организме будет нарушен синтез дезокситимидиловой кислоты, необходимой для последующего синтеза ДНК в клетках.

При образовании дТМФ из дУМФ происходит превращение ТГФ в дигидрофолат. Обратный переход ДГФ в тетрагидрофолат катализируется ферментом дигидрофолатредуктазой. Лекарственный препарат метотрексат (аметоптерин), широко применяемый при противоопухолевой терапии, является мощным ингибитором дигидрофолатредуктазы.

Пиримидиновые нуклеозиды, образующиеся в клетках при деградации соответствующих нуклеотидов, могут с помощью специальных

В то же время образующиеся в ходе внутриклеточного распада свободные азотистые основания пиримидинового ряда повторно не используются и подвергаются расщеплению до конечных продуктов.

Расщепление пиримидиновых нуклеотидов начинается с отщепления рибозофосфатного остатка, а образовавшееся свободное азотистое основание расщепляется без образования специфических конечных продуктов.

Конечными продуктами распада урацила, являются углекислый газ, вода и b-аланин. При расщеплении тимина в клетках в качестве одного из промежуточных продуктов образуется b-аминоизобутират, который после дезаминирования в конечном итоге преобразуется через пропионат в сукцинил-КоА.

5.Метаболизм нуклеотидов пуринового ряда

При синтезе нуклеотидов пуринового ряда, в отличие от синтеза пиримидиновых нуклеотидов, формирование гетероциклического ядра идет непосредственно на рибозо-5-фосфата. Вначале синтезируется ФРПФ, который при взаимодействии с глутамином превращается в 5-фосфорибозиламин: Затем следует большая последовательность реакций, в ходе которых формируется пуриновое ядро. Первым нуклеотидом, образующимся в ходе синтеза является инозиновая кислота (ИМФ): В процессе синтеза 1 молекулы инозиновой кислоты клеткой расходуется 6 молекул АТФ.

Глутамин, аспартат, глицин, углекислый газ образуются в организме, однако в условиях недостатка фолиевой кислоты могут возникнуть проблемы с обеспеченностью синтеза пуриновых нуклеотидов одноуглеродными группировками, переносчиками которых служит в клетках ТГФ.

Из ИМФ синтезируются другие нуклеотиды пуринового ряда. При синтезе АМФ (см. далее следующую схему) идет аминирование ИМФ, источником аминогруппы служит аспартат. Реакция идет в два этапа, а затраты энергии покрываются за счет гидролиза ГТФ.

При синтезе гуаниловой кислоты вначале остаток гипоксантина в ИМФ окисляется до ксантина с образованием КМФ,а затем идет аминирование и превращение КМФ в ГМФ. Донором аминогруппы выступает глутамин, энергетика реакции обеспечивается расщеплением АТФ.

Образовавшиеся АМФ и ГМФ в ходе реакций трансфосфорилирования с АТФ преобразуются в АДФ и ГДФ, а затем последние подвергаются фосфорилированию за счет энергии, выделяющейся при биологическом окислении, превращаясь в АТФ и ГТФ.

Описанный синтез пуриновых нуклеотидов с использованием в качестве пластического материала атомных группировок из молекул других соединений получил название синтеза de novo. В клетках млекопитающих работают также механизмы реутилизации образовавшихся в ходе внутриклеточного расщепления пуриновых нуклеотидов азотистых оснований. Этот механизм синтеза пуриновых нуклеотидов получил название "синтез сбережения."

Наиболее важным путем реутилизации является фосфорибозилирование свободных азотистых оснований. Известны два варианта этого процесса:

а. При участии фермента гипоксантин-гуанин - фосфорибозилтрансферазы свободные гипоксантин или гуанин превращаются в ИМФ и ГМФ соотвественно:

б. При участии фермента аденин-фосфорибозилтрансферазы в аналогичной реакции свободный аденин превращается в АМФ.

Кстати говоря,такого механизма для реутилизации пиримидиновых азотистых оснований не существует. Имеющаяся в клетках оротат-фосфорибозилтрансфераза не может катализировать фосфорибозилирование тимина, цитозина или урацила.

Превращение пуриновых нуклеозидов в нуклеотиды катализирует фермент аденозинкиназа:

Аденозин + АТФ-------> АМФ + АДФ. Этот фермент катализирует также фосфорилирование гуанозина, инозина и их дезоксипроизводных.

Расщепление пуриновых нуклеотидов идет во всех клетках. Конечным продуктом катаболизма образующихся при расщеплении нуклеотидов пуриновых азотистых оснований является мочевая кислота. С наибольшей интенсивностью образование мочевой кислоты идет в печени, тонком кишечнике и почках. Установлено, что до 20% мочевой кислоты у человека может расщепляется до СО2 и NH3 и выделяться через кишечник, причем это расщепление мочевой кислоты не связано с действием кишечной микрофлоры.

Нуклеотиды в клетках подвергаются дефосфорилирования с образованием аденозина или гуанозина. Аденозин при участии фермента аденозиндезаминазы превращается в инозин и далее путем фосфоролиза в гипоксантин. Гипоксантин при участии ксантиноксидазы вначале окисляется в ксантин, а затем при участии того же фермента ксантин переходит в мочевую кислоту. При расщеплении ГМФ вначале в несколько этапов происходит образование свободного гуанина, который при участии фермента гуаназы переходит непосредственно в ксантин, а затем окисляется в мочевую кислоту.

Образовавшаяся мочевая кислота поступает в кровь и выводится через почки с мочей. Нормальное содержание мочевой кислоты в крови составляет 0,12 - 0,46 мМ/л. Общее количество растворенной мочевой кислоты в жидкой фазе организма (уратный пул) составляет для мужчин величину порядка 1,2 г. Ежесуточно с мочой выводится от О,5 до 0,7 г мочевой кислоты.

6.Синтез дезоксирибонуклеотидов

Специального пути синтеза дезоксирибонуклеотидов в клетках не существует.Дезоксирибонуклеотиды образуются из рибонуклеотидов путем восстановления последних. Источником восстановительных эквивалентов для образования дезокрибонуклеотидов служит специальный белок тиоредоксин, который может существовать в форме дитиола или же после отдачи атомов водорода в форме дисульфида. Дисульфидная форма тиоредоксина может превращаться в клетке в дитиольную форму; донором восстановительных эквивалентов в последнем случае является НА-ФН+Н

7.Регуляция синтеза нуклеотидов

Скорость синтеза нуклеотидов должна соответствовать потребностям клетки, в связи с чем она должна эффективным образом регулироваться. В работе механизмом регуляции синтеза пуриновых и пиримидиновых нуклеотидов много общего: решающую роль в регуляции играет ретроингибирование - снижение скорости синтеза нуклеотидов при достижении их достаточной концентрации в клетках за счет аллостерического ингибирования ключевых ферментов соответствующих метаболических путей.

Основными регуляторными ферментами метаболического пути синтеза пиримидиновых нуклеотидов являются карбамоилфосфатсинтетаза (Е1) и аспартаттранскарбамоилаза (Е2). Активность первого фермента (Е1) ингибируется по аллостерическому механизму высокими концентрациями УТФ в клетке, а активность второго фермента (Е2) - высокими концентрациями ГТФ. Активность карбамоифосфатсинтетазы, кроме того, активируется высокими концентрациями ФРПФ. С другой стороны, синтез ФРПФ тормозится высокими концентрациями дТДФ за счет аллостерического ингибирования ФРПФ-синтетазы (Е3).

Накопление избыточных количеств пуриновых нуклеотидов в клетке также приводит к торможению их синтеза.

Прежде всего следует отметить, что накопление в клетке как адениловых, так и гуаниловых нуклеотидов по аллостерическому механизму тормозит активность ФРПФ-синтетазы (Е). Одновременно накопление АМФ и ГМФ также по аллостерическому механизму снижает активность ФРПФ-амидотрансферазы (Е), причем ингибирующий эффект высоких концентраций ГМФ более выражен, нежели у АМФ. Торможение пуриновыми нуклеотидами активности ФРПФ-синтетазы имеет для регуляции их синтеза большее значение, чем ингибирование ФРПФ-амидотрансферазы, так как в первом случае выключается и синтез пуриновых нуклеотидов de novo и "синтез сбережения", тогда как во втором случае прекращается лишь синтез de novo.

Далее, избыточные концентрации АМФ ингибируют синтез АМФ из ИМФ, а высокие концентрации ГМФ тормозят образование этого нуклеотида из ИМФ. В обоих случаях работают механизмы аллостерического ингибирования ферментов, участвующих в этих превращениях.

Наконец, синтез АМФ из ИМФ стимулируется ГТФ, поскольку ГТФ является источником энергии для синтеза. В свою очередь, АТФ стимулирует синтез ГМФ из ИМФ по той же самой причиной. Наличие этого регуляторного механизма позволяет сбалансировать объемы синтеза адениловых и гуаниловых нуклеотидов в клетке.

Регуляция синтеза дезоксирибонуклеотидов обеспечивает скоординированный в количественном отношении синтез различных дезоксинуклеотидов, необходимых для последующей сборки дезоксиполинуклеотидных цепей ДНК. Важнейшую роль в этой регуляции играет фермент рибонуклеозиддифосфатредуктаза. Этот фермент имеет два типа аллостерических участков: один из них регулирует общую активность фермента, а другой - субстратную специфичность. Общая каталитическая активность снижается при связывании в первом центре дАТФ, последний служит сигналом об избытке дезоксинуклеотидов в клетке. Связывание различных дНуДФ ил дНуТФ в аллостерических участках второго типа позволяет ферменту более или менее избирательно нарабатывать недостающие в данный момент в клетке те или иные дезоксирибонуклеозиддифосфаты

8. Нарушения обмена нуклеотидов при патологии

Пиримидиновые нуклеотиды не имеют специфических конечных продуктов обмена, видимо, поэтому при состояниях, характеризующихся избыточным синтезом пиримидинов, как правило, нет выраженных клинических признаков. При торможении синтеза дезокситимидиловой кислоты, обусловленном недостатком в организме фолиевой кислоты или кобаламина, идет одновременно и нарушение синтеза пуриновых нуклеотидов, что проявляется в виде нарущения синтеза нуклеиновых кислот с развитием той или иной формы анемии.

Наиболее известным вариантом нарушения синтеза пиримидинов является оротатацидурурия - повышенное выделение с мочой продукта неполного синтеза пиримидинов - оротовой кислоты. Оротатацидурия чаще всего является следствием генетически обусловленного нарушения синтеза двух ферментов: оротат-фосфорибозилтрансферазы и оротидилатдекарбоксилазы. Синтезируемая оротовая кислота не используется в клетках и накапливается в органах и тканях, она в повышенных количествах выделяется с мочей. Для детей с этой патологией характерны отставание в развитии, мегалобластическая анемия и "оранжевая кристаллоурия", последняя обусловлена образованием в моче кристаллов оротовой кислоты, имеющих оранжевый цвет. Для лечения таких детей используется уридин, который достаточно хорошо усваиваивается организмом, однако уридин становится еще одним незаменимым компонентом пищи.

Наиболее известным заболеванием, тесно связанным с нарушением обмена пуриновых нуклеотидов, является подагра. У больных с этой патологией наблюдается повышенное содержание мочевой кислоты в крови и тканях, а также избыточное количество уратов в моче. В норме концентрация мочевой кислоты в крови и других биологических жидкостях достаточно близка к насыщающей. Поэтому повышение ее содержания в биологических жидкостях приводит к появлению в них кристаллов мочевой кислоты. Если кристаллы появляются в суставной жидкости, развивается подагрические артриты. Выпадение кристаллов мочевой кислоты непосредственно в ткани вызывает асептическое воспаление с последующим инкапсулированием образовавшихся кристаллов и формированием подагрических узелков. Наиболее тяжелым проявлением этого заболевания является подагрическая нефропатия с нарушением функции почек.

От подагры страдает от 0,3% до 1,7% населения, причем у мужчин подагра встречается в 20 раз чаще, чем у женщин. Развитие заболевания тесно связано с гиперурекемией - повышеннным содержанием мочевой кислоты в крови. В норме содержание мочевой кислоты составляет 3 - 7 мг/дл (0,12 - 0,46 мМ/л). Среди лиц с содержанием мочевой кислоты в пределах 7 - 8 мг/дл 20% больных подагрой; если же содержание мочевой кислоты в крови превышает 9 мг/дл число больных подагрой возрастает до 90 и более процентов.

Причинами подагры в ряде случаев является нарушение функционирования таких ферментов как ФРПФ-синтетаза или гипоксантин-гуанин-фосфорибозилтрансфераза. У ряда больных было обнарушено повышение активности фермента ФРПФ-синтетазы или снижение чувствительности фермента к ингибирующему действию пуриновых нуклеотидов. В обоих вариантов объем синтеза пуриновых нуклеотидов возрастает, что приводит к гиперпродукции мочевой кислоты.

При снижении активности гипоксантин-гуанин-фосфорибозилтрансферазы в клетках снижается уровень повторного использования образующихся в них гипоксантина и гуанина за счет торможения "синтеза сбережения". Возникает нехватка пуриновых нуклеотидов, которая компенсируется активацией синтеза пуринов de novo, что в конечном итоге ведет к повышенному образованию пуринов в организме и, соответственно, к повышения содержания мочевой кислоты в организме.

При лечении подагры стремятся уменьшить в рационе количество продуктов, содержащих нуклеиновые кислоты или соединения группы пурина. Хороший эффект дает использование лекарственного препарата - аллопуринола. Аллопуринол в клетках под действием фермента ксантиноксидазы окисляется до аллоксантина, а аллоксантин является мощным конкурентным ингибитором ксантиноксидазы. Образование ксантина и мочевой кислоты в клетках резко снижается, а из организма в качестве конечного продукта обмена пуринов начинает выделяться гипоксантин, растворимость которого в биологических жидкостях в несколько раз выше, чем растворимость мочевой кислоты.

При полном отсутствии в клетках гипоксантин-гуанин-фосфорибозилтрансферазы развивается болезнь Леш-Нихана, для которой характерны высокий уровень гиперурикемии, камни в мочевыводящих путях, корковый паралич, судороги и крайне агрессивное поведение. в том числе и стремление к членовредительству (Ребенок, например. может обкусать собственные пальцы или губы).

Гиперурикемия может также встречаться при воздействии на человека ионизирующей радиации. В этом случае гиперурикемия является отражением интенсификации распада нуклеиновых кислот в облученных органах и тканях.