Карбоангидраза функции. Ингибиторы карбоангидразы. Механизм действия, препараты, показания. Влияние на дыхательный центр раздражения различных рецепторов и отделов центральной нервной системы

Которые, как ни парадоксально, самостоятельно не применяются в качестве диуретиков (мочегонных средств). В основном ингибиторы карбоангидразы применяются при глаукоме.

Карбоангидраза в эпителии проксимальных канальцев нефрона катализирует дегидратацию угольной кислоты, что является ключевым звеном в реабсорбции бикарбонатов. При действии ингибиторов карбоангидразы бикарбонат натрия не реабсорбируется, а выделяется с мочой (моча становится щелочной). Вслед за натрием из организма с мочой выводится калий и вода. Мочегонное действие веществ этой группы слабое, так как почти весь выделившийся в мочу в проксимальных канальцах натрий задерживается в дистальных частях нефрона. Поэтому в качестве диуретиков ингибиторы карбоангидразы в настоящее время самостоятельно не применяются .

Препараты ингибиторов карбоангидразы

Ацетазоламид

(диакарб) является наиболее известным представителем данной группы диуретиков. Он хорошо всасывается в ЖКТ и в неизмененном виде быстро выделяется с мочой (то есть действие его кратковременное). Аналогичные ацетазоламиду препараты – дихлорфенамид (даранид) и метазоламид (нептазан).

Метазоламид относится также к классу ингибиторы карбоангидразы. Имеет более длительный период полувыведения, чем ацетазоламид и менее нефротоксичен.

Дорзоламид . Показан для снижения повышенного внутриглазного давления у пациентов с открытоугольной глаукомой или с глазной гипертензией, которые недостаточно реагируют на бета-адреноблокаторы.

Бринзоламид (торговые наименования Azopt, Alcon Laboratories, Inc, Befardin Fardi MEDICALS) относится также к классу ингибиторы карбоангидразы. Используется для снижения внутриглазного давления у пациентов с открытоугольной глаукомой или глазной гипертензией. Активно применяется сочетание бринзоламида с тимололом на рынке под торговым названием Азарга (Azarga).

Побочные эффекты

Ингибиторы карбоангидразы оказывают следующие основные побочные эффекты:

  • гипокалиемия;
  • гиперхлоремический метаболический ацидоз;
  • фосфатурия;
  • гиперкальциурия с риском образования почечных камней;
  • нейротоксичность (парестезии и сонливость);
  • аллергические реакции.

Противопоказания

Ацетазоламид, как и другие ингибиторы карбоангидразы, противопоказан при циррозе печени, так как подщелачивание мочи препятствует выделению аммиака, что приводит к энцефалопатии.

Показания к применению

Ингибиторы карбоангидразы в основном используются для лечения глаукомы. Они также могут быть использованы для лечения эпилепсии и острой горной болезни. Так как они способствуют растворению и выведению мочевой кислоты, они могут быть использованы при лечении подагры.

Ацетазоламид применяется при следующих состояниях:

  • Глаукома (снижает продукцию внутриглазной жидкости сосудистым сплетением цилиарного тела.
  • Лечение эпилепсии (petit mal). Ацетазоламид эффективен при лечении большинства типов припадков, в том числе тонико-клонических и абсансов, хотя и имеет ограниченную пользу, так как при длительном применении развивается толерантность.
  • Для профилактики нефропатии при лечении , так как при распаде клеток освобождается большое количество пуриновых оснований, которые обеспечивают резкое увеличение синтеза мочевой кислоты. Подщелачивание мочи ацетазоламидом из-за выделения бикарбонатов тормозит нефропатию вследствие выпадения кристаллов мочевой кислоты.
  • Для повышения диуреза при отеках и коррекции метаболического гипохлоремического алкалоза при ХСН. За счет снижения реабсорбции NaCl и бикарбонатов в проксимальных канальцах.

Однако ни при одном из этих показаний назначение ацетазоламида не является основным фармакологическим лечением (препаратом выбора). Ацетазоламид назначается также при горной болезни (так как он вызывает ацидоз, который приводит к восстановлению чувствительности дыхательного центра к гипоксии).

Ингибиторы карбоангидразы при лечении горной болезни

На большой высоте парциальное давление кислорода ниже, и люди должны дышать быстрее, чтобы получить достаточное для жизни количество кислорода. Когда это происходит, парциальное давление углекислого газа CO2 в легких уменьшается (просто выдувается при выдохе), в результате чего возникает дыхательный алкалоз. Этот процесс, как правило, компенсируется почками благодаря экскреции бикарбонатов и благодаря этому вызывается компенсаторный метаболический ацидоз, но этот механизм занимает несколько дней.

Более непосредственное лечение это ингибиторы карбоангидразы, которые предотвращают поглощение бикарбоната в почках и помогают скорректировать алкалоз. Ингибиторы карбоангидразы также улучшают течение хронической горной болезни.

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

Карбоангидраза . (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль карбоангидразы в организме связана с поддержанием кислотно-щелочного равновесия, транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность карбоангидразы в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности карбоангидразы в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность карбоангидразы появляется в моче, в то время как в норме она отсутствует. Контролировать активность карбоангидразы в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.


Из венозной крови можно извлечь 55-58 об.% углекислого газа. Большая часть СО2, извлекаемого из крови, происходит из имеющихся в плазме и эритроцитах солей угольной кислоты и только около 2,5 об.% углекислого газа растворено и около 4-5об.% находится в соединении с гемоглобином в виде карбогемоглобина.

Образованно угольной кислоты из углекислого газа происходит в эритроцитах, где содержится фермент карбоангидраза, являющийся мощным катализатором, ускоряющим реакцию гидратации СО2.

Связывание углекислого газа кровью в капиллярах большого круга. Углекислый газ, образующийся в тканях, диффундирует в кровь кровеносных капилляров, так как напряжение СО2 в тканях значительно превышает его напряжение в артериальной крови. Растворяющийся в плазме СО2 диффундирует внутрь эритроцита, где под влиянием карбоангидразы он мгновенно превращается в угольную кислоту,

Согласно расчетам, активность карбоангидразы в эритроцитах такова, что реакция гидратации углекислоты ускоряется в 1500-2000 раз. Так как весь углекислый газ внутри эритроцита превращается в угольную кислоту, то напряжение СО2 внутри эритроцита близко к нулю, поэтому все новые и новые количества СО2 поступают внутрь эритроцита. В связи с образованием угольной кислоты из СО3 в эритроците концентрация ионов НСО3" возрастает, и они начинают диффундировать в плазму. Это возможно потому, что поверхностная мембрана эритроцита проницаема для анионов. Для катионов мембрана эритроцита практически непроницаема. Взамен ионов НСО3" в эритроциты входит ион хлора. Переход ионов хлора из плазмы внутрь эритроцита освобождает в плазме ионы натрия, которые связывают поступающие нз эритроцита ионы НСО3, образуя NaHCО3 Химический анализ плазмы венозной крови показывает значительное увеличение в ней бикарбоната.

Накопление внутри эритроцита анионов приводит к повышению осмотического давления внутри эритроцита, а это вызывает переход воды из плазмы через поверхностную мембрану эритроцита. В результате объем эритроцитов в капиллярах большого круга увеличивается. При исследовании с помощью гематокрнта установлено, что эритроциты занимают 40% объема артериальной крови и 40,4% объема венозной крови. Из этого следует, что объем эритроцитов венозной крови больше, чем эритроцитом артериальной, что объясняется проникновением в них воды.

Одновременно с поступлением СО2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином и превращение его в редуцированный гемоглобин. Последний является значительно менее диссоциирующей кислотой, чем оксигемоглобин и угольная кислота. Поэтому при превращении оксигемоглобина в гемоглобин Н2СО3 вытесняет из гемоглобина ионы калия и, соединяясь с ними, образует калиевую соль бикарбоната.

Освобождающийся Н˙ ион угольной кислоты связывается гемоглобином. Так как редуцированный гемоглобин является малодиссоциированной кислотой, то при этом не происходит закисления крови и разница рН венозной и артериальной крови крайне невелика. Происходящую в эритроцитах тканевых капилляров реакцию можно представить следующим образом:

КНbO2 + Н2СO3= HHb + O2 + КНСO3

Из изложенного следует, что оксигемоглобин, превращаясь в гемоглобин и отдавая связанные им основания углекислоте, способствует образованию бикарбоната и транспорту в таком виде углекислоты. Кроме того, гкмоглобин образует химическое соединение с СО2 - карбогемоглобин. Наличие в крови соединения гемоглобина с углекислым газом было установлено путем следующего опыта. Если к цельной крови прибавить цианистый калий, который полностью инактивирует карбоангидразу, то оказывается, что эритроциты такой крови связывают больше СО2, чем плазма. Отсюда был сделан вывод, что связывание СО2 эритроцитами после инактивирования карбоангидразы объясняется наличием в эритроцитах соединения гемоглобина с СО2. В дальнейшем выяснилось, что СО2 присоединяется к аминной группе гемоглобина, образуя так называемую карбаминовую связь.

Реакция образования карбогемоглобина может идти в одну или другую сторону в зависимости от напряжения углекислого газа в крови. Хотя небольшая часть всего количества углекислого газа, которое может быть извлечено из крови, находится в соединении с гемоглобином (8-10%), однако роль этого соединения в транспорте углекислоты кровью достаточно велика. Примерно 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, образуя карбогемоглобин.

Отдача СО2 кровью в легочных капиллярах. Вследствие более низкого парциального давления СО2 в альвеолярном воздухе по сравнению с напряжением его в венозной крови углекислый газ переходит путем диффузии из крови легочных капилляров в альвеолярный воздух. Напряжение СО2в крови падает.

Одновременно с этим вследствие более высокого парциального давления кислорода в альвеолярном воздухе по сравнению с его напряжением в венозной крови кислород поступает из альвеолярного воздуха в кровь капилляров легких. Напряжение О2 в крови возрастает, и гемоглобин превращается в оксигемоглобин. Так как последний является кислотой, диссоциация которой значительно выше, чем гемоглобина угольной кислоты, то он вытесняет угольную кислоту из ее калиевой. Реакция идет следующим образом:

ННb + O2 + КНСO3= КНbO2+H2CO3

Освободившаяся из своей связи с основаниями угольная кислота расщепляется карбоангидразой на углекислый газ в воду. Значение карбоангидразы в отдаче углекислого газа в легких видно из следующих данных. Для того чтобы произошла реакция дегидратации Н2СО3 растворенной в воде, с образованием того количества углекислого газа, которое выходит из крови за время ее нахождения в капиллярах легких, требуется 300 секунд. Кровь же проходит через капилляры легких в течение 1-2 секунд, но за это время успевает произойти дегидратация угольной кислоты внутри эритроцита и диффузия образовавшегося СО2 сначала в плазму крови, а затем в альвеолярный воздух.

Так как в легочных капиллярах уменьшается в эритроцитах концентрация ионов НСО3, то эти ионы из плазмы начинают диффундировать в эритроциты, а ионы хлора диффундируют из эритроцитов в плазму. В связис тем что напряжение углекислого газа в крови легочных капилляров уменьшается, карбаминовая связь расщепляется и карбогемоглобин отдает углекислый газ.

Кривые диссоциации соединений угольной кислоты в крови. Как мы уже говорили, свыше 85% углекислого газа, которое может быть извлечено из крови подкислении ее, освобождается в результате расщепления бикарбонатов (калия в эритроцитах и натрия в плазме).

Связывание углекислого газа и отдача его кровью зависят от его парциального напряжения. Можно построить кривые диссоциации соединений углекислоты в крови, подобные кривым диссоциации оксигемоглобина. Для этого по оси ординат откладывают объемные проценты связанного кровью углекислого газа, а по оси абсцисс- парциальные напряжения углекислого газа. Нижняя кривая нарис. 58 показывает связывание углекислого газа артериальной кровью, гемоглобин которой почти полностью насыщен кислородом. Верхняя кривая показывает связывание кислого газа венозной кровью.

Различие в высоте этих кривых зависит от того, что артериальная кровь, богатая оксигемоглобином, обладает меньшей способностью связывать углекислый газ по сравнению с венозной кровью. Являясь более сильной кислотой, чем угольная кислота, оксигемоглобин отнимает основания у бикарбонатов и этим способствует освобождению угольной кислоты. В тканях оксигемоглобин, переходя в гемоглобин, отдает связанные с ним основания, увеличивая связывание кислого газа кровью.

Точка А на нижней кривой на рис. 58 соответствует напряжению кислоты, равному 40 мм рт. ст., т. е. тому напряжению, которое фактически имеется в артериальной крови. При таком напряжении связано 52 об.% СО2. Точка V на верхней кривой соответствует напряжению кислого газа 46 мм рт. ст., т. е. фактически имеющемуся в венозной крови. Как видно из кривой, при таком напряжении венозная кровь связывает 58 об.% углекислого газа. Линия AV, соединяющая верхнюю и нижнюю кривую, соответствует тем изменениям способности связывать углекислый газ, которые происходят при превращении артериальной крови в венозную или, наоборот, венозной крови в артериальную.

Венозная кровь благодаря тому, что содержащийся в ней гемоглобин переходит в оксигемоглобин, в капиллярах легких отдает около 6 об.% СО2. Если бы в легких гемоглобин не превращался в оксигемоглобин, то, как видно из кривой, венозная кровь при имеющемся в альвеолах парциальном давлении углекислого газа, равном 40 мм рт. ст.. связывала бы 54 об.% СО2, следовательно, отдала бы не 6, а только 4об.%. Равным образом, если бы артериальная кровь в капиллярах большого круга не отдавала своего кислорода, т. е. если бы гемоглобин ее оставался насыщенным кислородом, то эта артериальная кровь при парциальпом давлении углекислого газа, имеющемся в капиллярах тканей тела, смогла бы связат не 58 об.% СО2, а лишь 55 об.%.

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

Хотя СO2 растворяется в жидкости гораздо лучше, чем O2 , только 3−6 % общего количества продуцируемого тканями СO2 переносится плазмой крови в физически растворенном состоянии. Остальная часть вступает в химические связи.

Поступая в тканевые капилляры, СО2 гидратируется, образуя нестойкую угольную кислоту:

Направление этой обратимой реакции зависит от РCО2 в среде. Она резко ускоряется под действием фермента карбоангидразы, находящегося в эритроцитах, куда СO2 быстро диффундирует из плазмы.

Около4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СO2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода - дезоксигенирование (эффект Холдена). При этом гемоглобин высвобождает связанный с ним ион калия, с которым в свою очередь, реагирует угольная кислота:

Часть ионов НСО-3 диффундирует в плазму, связывая там ионы натрия, в эритроцит же поступают в порядке сохранения ионного равновесия ионы хлора. Кроме того, также за счет уменьшения протонного сродства дезоксигенированный гемоглобин легче образует карбаминовые соединения, связывая при этом еще около 15 % переносимого кровью СO2 .

В легочных капиллярах происходит высвобождение части СO2 , который диффундирует в альвеолярный газ. Этому способствует более низкое, чем в плазме, альвеолярное РCO2 также усиление кислотных свойств гемоглобина при его оксигенации. В ходе дегидратации угольной кислоты в эритроцитах (эта реакция тоже резко ускоряется карбоангидразой) оксигемоглобин вытесняет ионы калия из гидрокарбоната. Ионы НСО-3 поступают из плазмы в эритроцит, а ионы Cl- - в обратном направлении. Таким путем каждые 100 мл крови отдают в легких 4−5 мл СО2 - то же количество, какое кровь получает в тканях (артериовенозная разница по СO2).



Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.