Внешнее дыхание. Механизм вентиляции легких. Эластическая тяга легких. Сурфактант. Михаил Ингерлейб. Все дыхательные гимнастики. Для здоровья тех, кому за… Эластические силовые компоненты


Рис. 4. Изменения объема грудной клетки и положения диафрагмы при спокойном вдохе (изображены контуры грудной клетки и диафрагмы, сплошные линии – выдох, пунктирные – вдох)

При очень глубоком и интенсивном дыхании или при повышении сопротивления вдоху в процесс увеличения объема грудной клетки включается ряд вспомогательных дыхательных мышц, которые могут поднимать ребра: лестничные, большая и малая грудные, передняя зубчатая. К вспомогательным мышцам вдоха относятся также мышцы, разгибающие грудной отдел позвоночника и фиксирующие плечевой пояс при опоре на отведенные назад руки (трапециевидная, ромбовидные и др.).
Как мы уже говорили, спокойный вдох протекает пассивно – на фоне практически расслабленных мышц. При активном интенсивном выдохе «подключаются» мышцы брюшной стенки {косые, поперечная и прямая), в результате чего объем брюшной полости уменьшается, в ней повышается давление, давление передается на диафрагму и поднимает ее. Вследствие сокращения внутренних косых межреберных мышц происходит опускание ребер и сближение их концов. К вспомогательным мышцам выдоха относятся также мышцы, сгибающие позвоночник.

Рис. 5. Мышцы, принимающие участие в акте дыхания:
а: 1 – трапециевидная мышца; 2 – ременная мышца головы; 3 – большая и малая ромбовидная мышцы; 4 – нижняя задняя зубчатая мышца; 5 – пояснично-грудная фасция; 6 – поясничный треугольник; 7 – широчайшая мышца спины
б: 1 – большая грудная мышца; 2 – подмышечная полость; 3 – широчайшая мышца спины; 4 – передняя зубчатая мышца; 5 – наружная косая мышца живота; 6 – апоневроз наружной косой мышцы живота; 7 – пупочное кольцо; 8 – белая линия живота; 9 – паховая связка; 10 – поверхностное паховое кольцо; 11 – семенной канатик

Как вам уже известно, легкие и внутренние стенки грудной полости покрыты серозной оболочкой – плеврой.
Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, в которой находится серозная жидкость, по составу сходная с лимфой. Благодаря этому легкие постоянно сохраняют объем, находятся в расправленном состоянии.
Если в плевральную щель ввести иглу, соединенную с манометром, полученные данные покажут, что давление в ней ниже атмосферного. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшиться в объеме.
Эластическая тяга легких обусловлена тремя факторами:
1. Упругостью ткани стенок альвеол вследствие наличия в них эластичных волокон.
2. Тонусом бронхиальных мышц.
3. Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.
В плевральной щели в обычных условиях не бывает газов, при введении в плевральную щель некоторого количества воздуха он постепенно рассасывается. Если в плевральную щель попадает небольшое количество воздуха, образуется пневмоторакс – легкое частично спадается, но вентиляция его продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается в кровь и легкое расправляется.

Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшиться в объеме.
При вскрытии грудной клетки, например при ранениях или внутригрудных операциях, давление вокруг легкого становится таким же, как атмосферное, и легкое спадается полностью. Его вентиляция прекращается, несмотря на работу дыхательных мышц. Такой пневмоторакс называется открытым. Двусторонний открытый пневмоторакс, если не оказать больному экстренную помощь, приводит к смерти. Необходимо либо срочно начать производить некусственное дыхание ритмическим нагнетанием воздуха в легкие через трахею, либо оперативно герметизировать плевральную полость.

Дыхательные движения

Физиологическое описание нормальных дыхательных движений, как правило, не соответствует движениям, которые мы наблюдаем у себя и своих знакомых. Мы можем увидеть как дыхание, обеспечиваемое в основном диафрагмой, так и дыхание, обеспечиваемое в основном работой межреберных мышц. И тот, и другой вид дыхания – в пределах нормы. Подключение мышц плечевого пояса чаще происходит при серьезных заболеваниях или очень интенсивной работе и почти никогда не наблюдается в нормальном состоянии, у относительно здоровых людей.
Дыхание, обеспечиваемое в основном за счет работы диафрагмы, более характерно для мужчин. В норме вдох сопровождается незначительным выпячиванием брюшной стенки, выдох – незначительным ее втягиванием. Это брюшной тип дыхания в чистом варианте.
Реже, но все же достаточно часто, встречается парадоксальный, или обратный, тип брюшного дыхания, при котором брюшная стенка на вдохе втягивается, а на выдохе выпячивается. Этот тип дыхания обеспечивается исключительно за счет сокращения диафрагмы, без смещения органов брюшной полости. Этот вид дыхания также чаще встречается у мужчин.
Для женщин характерен грудной тип дыхания, обеспечиваемый в основном за счет работы межреберных мышц. Такая особенность может быть связана с биологической готовностью женщины к материнству и, как следствие, с затрудненностью брюшного дыхания при беременности. При этом типе дыхания наиболее заметные движения совершают грудина и ребра.
Дыхание, в котором задействованы плечи и ключицы, обеспечивается за счет работы мышц плечевого пояса. Вентиляция легких при этом типе дыхания слабая, воздух поступает только в их верхнюю часть, поэтому такой тип дыхания называется верхушечным. У здоровых людей верхушечный тип дыхания практически не встречается, он развивается при серьезных заболевания (не только болезнях легких!), но для нас этот тип важен, так как используется во многих дыхательных гимнастиках.

Процесс дыхания в цифрах

Легочные объемы

Понятно, что объем вдоха и выдоха может быть выражен в цифровых показателях. И в этом вопросе тоже есть несколько интересных, но малоизвестных фактов, знание которых необходимо для выбора того или иного вида дыхательной гимнастики.
При спокойном дыхании человек вдыхает и выдыхает около 500 мл (от 300 до 800 мл) воздуха; этот объем воздуха называется дыхательным объемом. Кроме обычного дыхательного объема при максимально глубоком вдохе человек может вдохнуть около 3 000 мл воздуха – это резервный объем вдоха. После обычного спокойного выдоха любой здоровый человек напряжением мышц выдоха способен «выдавить» из легких еще около 1 300 мл воздуха – это резервный объем выдоха. Сумма указанных объемов составляет жизненную емкость легких: 500 мл + 3 000 мл + 1 300 мл = 4 800 мл.
Как видно из расчетов, природа предусмотрела почти десятикратный запас по возможности «прокачивать» воздух через легкие. Сразу заметим – функциональный запас по «прокачиванию» воздуха (вентиляции легких) не совпадает с запасом по возможности потребления и транспорта кислорода.
Дыхательный объем - количественное выражение глубины дыхания.
Жизненная емкость легких – это максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха. Жизненная емкость легких у мужчин выше (4 000-5 500 мл), чем у женщин (3 000-4 500 мл), она больше в положении стоя, чем в положении сидя или лежа. Физические тренировки способствуют увеличению жизненной емкости легких.
После максимального глубокого выдоха в легких остается довольно значительный объем воздуха – около 1 200 мл. Это остаточный объем воздуха. Большая его часть может быть удалена из легких только при открытом пневмотораксе. В спавшихся легких также остается некоторое количество воздуха (минимальный объем), оно задерживается в «воздушных ловушках», образующихся потому, что часть бронхиол спадается раньше альвеол.

Рис. 6. Спирограмма – запись изменения легочных объемов

Максимальное количество воздуха , которое может находиться в легких, называется общей емкостью легких ; оно равно сумме остаточного объема и жизненной емкости легких (в приведенном примере: 1 200 мл + 4 800 мл = 6 000 мл).
Объем воздуха , находящегося в легких в конце спокойного выдоха (при расслабленной дыхательной мускулатуре), называется функциональной остаточной емкостью легких. Она равна сумме остаточного объема и резервного объема выдоха (в использованном примере: 1 200 мл + 1 300 мл = 2 500 мл). Функциональная остаточная емкость легких близка к объему альвеолярного воздуха перед началом вдоха.
Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания. При спокойном дыхании в минуту через легкие проходит 6–9 л воздуха. Вентиляция легких зависит от глубины и частоты дыхания, в состоянии покоя это, как правило, от 12 до 18 вдохов в минуту. Минутный объем дыхания равен произведению дыхательного объема на частоту дыхания.

Мертвое пространство

Воздух находится не только в альвеолах, но и в воздухоносных путях. К ним относятся полость носа (или рта при ротовом дыхании), носоглотка, гортань, трахея, бронхи. Воздух, находящийся в воздухоносных путях (за исключением дыхательных бронхиол), не участвует в газообмене, поэтому просвет воздухоносных путей называют анатомическим мертвым пространством. При вдохе последние порции воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе.
Объем анатомического мертвого пространства около 150 мл (примерно 1 / 3 дыхательного объема при спокойном дыхании). Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах в конце спокойного выдоха находится около 2 500 мл воздуха, поэтому при каждом спокойном вдохе обновляется лишь >/ 7 часть альвеолярного объема воздуха.

Значение воздухоносных путей

В понятие воздухоносные пути мы включаем носовую и ротовую полость, носоглотку, гортань, трахею и бронхи. В воздухоносных путях газообмен практически не производится, однако они необходимы для нормального дыхания. Проходя через них, вдыхаемый воздух претерпевает следующие изменения:
увлажняется;
согревается;
очищается от пыли и микроорганизмов.
С точки зрения современной науки наиболее физиологичным считается дыхание через нос: при таком дыхании очистка воздуха от пыли особенно эффективна – проходя через узкие и сложные по форме носовые ходы, воздух образует вихревые потоки, способствующие соприкосновению пылевых частиц со слизистой оболочкой носа. Стенки воздухоносных путей покрыты слизью, к которой прилипают содержащиеся в воздухе частицы. Слизь постепенно перемещается (7-19 мм/мин) по направлению к носоглотке за счет деятельности мерцательного эпителия полости носа, трахеи и бронхов. В слизи содержится вещество лизоцим, оказывающее смертоносное воздействие на болезнетворные микроорганизмы. При раздражении частицами пыли и накопившейся слизью рецепторов глотки, гортани и трахеи человек кашляет, а при раздражении рецепторов полости носа – чихает. Это защитные дыхательные рефлексы.

При раздражении частицами пыли и накопившейся слизью рецепторов глотки, гортани и трахеи человек кашляет, а при раздражении рецепторов полости носа – чихает. Это защитные дыхательные рефлексы.
Кроме того, вдыхаемый воздух, проходя через обонятельную зону слизистой оболочки носа, «приносит» запахи – в том числе и предупреждающие об опасности, вызывающие половое возбуждение (феромоны), запахи свежести и природы, возбуждающие дыхательный центр и оказывающие влияние на настроение.
На количество вдыхаемого воздуха и эффективность вентиляции легких влияет еще и такая величина как просвет (диаметр) бронхов. Эта величина может изменяться под действием многих факторов, часть из которых поддается контролю. Гладкая кольцевая мускулатура стенки бронхов суживает просвет. Мышцы бронхов находятся в состоянии тонической активности, возрастающей при выдохе. Мышцы бронхов сокращаются при увеличении парасимпатических влияний вегетативной нервной системы, под действием таких веществ как гистамин, серотонин, простагландины. Расслабление бронхов происходит при уменьшении симпатических влияний вегетативной нервной системы, под действием адреналина.
Частично перекрывать просвет бронхов может избыточное выделение слизи, возникающее при воспалительных и аллергических реакциях, а также инородные тела, гной при инфекционных заболеваниях и т. д. – все это, несомненно, будет отражаться на эффективности газообмена.

Глава 2. Обмен газов в легких

Немного о кровообращении

Предыдущий этап – этап внешнего дыхания – заканчивается на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда он должен будет перейти в капилляры, «опутывающие» альвеолы густой сетью.
Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее, в левое предсердие. Из левого предсердия обогащенная кислородом кровь поступает в левый желудочек, а затем «отправляется в путешествие» по большому кругу кровообращения, к органам и тканям. «Обменявшись» с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь по венам поступает в правое предсердие, и большой круг кровообращения замыкается, начинается малый круг.
Малый круг кровообращения начинается в правом желудочке, откуда легочная артерия, разветвляясь и опутывая альвеолы капиллярной сетью, несет кровь на «зарядку» кислородом в легкие, а затем снова – по легочным венам в левое предсердие и так до бесконечности. Чтобы оценить эффективность и масштаб этого процесса, представьте, что время полного оборота крови составляет всего 20–23 секунды – весь объем крови успевает полностью «обежать» и большой, и малый круги кровообращения.

Рис 7. Схема малого и большого кругов кровообращения

Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:
количество кислорода и углекислого газа во вдыхаемом воздухе – т. е. его состав;
эффективность вентиляции альвеол – т. е. площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом;
эффективность альвеолярного газообмена - т. е. эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав (табл. 1). В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.

Таблица 1. Состав воздуха (в объемных %)

Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха. При спокойном дыхании состав альвеолярного воздуха мало зависит от фаз вдоха и выдоха. Например, содержание углекислого газа в конце вдоха всего на 0,2–0,3 % меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1 / 7 часть альвеолярного воздуха. Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться – движение воздуха «по оси» будет быстрее, а его состав будет приближаться к составу атмосферного воздуха. В верхней части легких альвеолы вентилируются менее эффективно, чем в нижних отделах, прилежащих к диафрагме.

Вентиляция альвеол

Газообмен между воздухом и кровью осуществляется в альвеолах, все остальные части легких служат только для «доставки» воздуха к этому месту, поэтому важна не общая величина вентиляции легких, а именно величина вентиляции альвеол. Она меньше вентиляции легких на величину вентиляции мертвого пространства.

Эффективность вентиляции альвеол (а следовательно, и газообмена) выше при более редком дыхании, чем при более частом.
Так, при минутном объеме дыхания, равном 8 000 мл, и частоте дыхания 16 раз в минуту вентиляция мертвого пространства составит
150 мл × 16 = 2400 мл.
Вентиляция альвеол будет равна
8 000 мл – 2 400 мл = 5 600 мл.
При минутном объеме дыхания 8 000 мл и частоте дыхания 32 раза в минуту вентиляция мертвого пространства составит
150 мл × 32 = 4 800 мл,
а вентиляция альвеол
8 000 мл – 4 800 мл = 3 200 мл,
т. е. будет вдвое меньшей, чем в первом случае. Отсюда следует первый из практических выводов: эффективность вентиляции альвеол (а следовательно, и газообмена) выше при более редком дыхании, чем при более частом.
Величина вентиляции легких регулируется организмом таким образом, чтобы газовый состав альвеолярного воздуха был постоянным. Так, при повышении концентрации углекислого газа в альвеолярном воздухе минутный объем дыхания увеличивается, при снижении – уменьшается. Однако регуляторные механизмы этого процесса находятся, к сожалению, не в альвеолах. Глубина и частота дыхания регулируются дыхательным центром на основании информации о количестве кислорода и углекислого газа в крови. О том, как это происходит, мы более подробно поговорим в разделе «Бессознательная регуляция дыхания».

Обмен газов в альвеолах

Газообмен в легких осуществляется посредством диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.

Рис. 8. Альвеолярное дыхание

Диффузия (от лат. diffusio – распространение, растекание) – взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного {аэро-гематического) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта . Толщина легочной мембраны всего 0,4–1,5 мкм.
Поступивший в кровь кислород и «принесенный» кровью углекислый газ могут находиться как в растворенном, так и в химически связанном виде – в виде непрочного соединения с гемоглобином эритроцитов. Эффективность транспорта газов эритроцитами напрямую связана с этим свойством гемоглобина, более подробно этот процесс будет рассмотрен в следующей главе.

Глава 3. Транспорт газов кровью

«Переносчиком» кислорода от легких к тканям и органам и углекислого газа от тканей и органов к легким является кровь. В свободном (растворенном) состоянии переносится настолько малое количество газов, что им можно смело пренебречь при оценке потребностей организма. Для простоты объяснения в дальнейшем будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Транспорт кислорода

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин - это комплекс гемоглобина и молекулярного кислорода.
Гемоглобин содержится в красных кровяных тельцах – эритроцитах. Эритроциты под микроскопом похожи на слегка приплюснутый бублик, дырку в котором забыли проткнуть до конца. Такая необычная форма позволяет эритроцитам лучше, чем шарообразным клеткам, взаимодействовать с кровью (за счет большей площади), ведь как известно, из тел, имеющих равный объем, шар имеет наименьшую площадь. Кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр, добираясь в самые отдаленные «уголки» организма.
В 100 мл крови при нормальной температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика – время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол (при соответствующих вентиляции и кровоснабжении) практически весь гемоглобин крови превращается в оксигемоглобин. Скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов, из чего можно сделать второй практический вывод: чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин ) напрямую зависит от содержания растворенного кислорода в жидкой части плазмы крови, причем механизмы усвоения растворенного кислорода весьма эффективны и стабильны.

Чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Например, подъем на высоту 2 000 м над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе – с 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3 % – несмотря на снижение атмосферного давления, ткани продолжают снабжаться кислородом.
В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. И наоборот: в тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина «не отдает» молекулярный кислород – уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в активное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.
Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении в крови концентрации углекислого газа и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.
Таким образом, становится понятно, как взаимосвязаны и сбалансированы друг относительно друга природные процессы. Изменение способности оксигемоглобина удерживать кислород имеет огромное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет течение обменных процессов и облегчает «отдачу» гемоглобином кислорода.
В волокнах скелетных мышц содержится «родственный» гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он не отдает ее обратно в кровь.

ФИЗИОЛОГИЯ ДЫХАНИЯ

(Внешнее дыхание и методы его исследования) План лекции

    Представления о механизмах вентиляции легких:

а) основные понятия необходимые для рассмотрения вопроса вентиляции легких (плевральная полость, плевральное давление, дыхательные мышцы, эластическая тяга легких, отрицательное давление);

б) современные представления о вентиляции легких;

    Краткие сведения о диффузионных процессах в легких и тканях и транспорте кислорода и углекислого газа кровью. Кривая диссоциации оксигемоглобина;

    Методы исследования дыхания;

1. Дыхание: содержание термина, этапы дыхания, методы исследования

Под дыханием высших животных и человека понимают совокупность процессов, обеспечивающих поступление во внутреннюю среду организма кислорода, использование его для окисления органических веществ, образование при этом углекислого газа и выделение его из организма в окружающую среду.

Дыхание включает пять этапов:

1 этап. Вентиляция легких – обмен газами между альвеолярной газовой смесью и атмосферным воздухом;

2 этап. Газообмен между альвеолярной газовой смесью и кровью;

3 этап. Транспорт кислорода от легких к тканям, а углекислого газа от тканей к легким;

4 этап. Газообмен между кровью и тканями;

5 этап. Тканевое или внутреннее дыхание.

Первые два этапа объединяют под общим названием внешнее дыхание. Последний, 5 этап дыхания является предметом изучения биологической химии и молекулярной биологии. Первые же четыре этапа дыхания являются традиционно предметом изучения физиологии и на наших лекциях и занятиях мы их будем рассматривать.

1 Этап дыхания – вентиляция легких

Грудная клетка и дыхательные мышцы.

Грудная полость представляет из себя герметичное пространство снизу ограниченное диафрагмой, а с других сторон костно-мышечным каркасом грудной клетки. Диафрагма – это скелетная мышца, представленная в основном радиально ориентированными мышечными волокнами. Одна точка фиксации мышечных волокон находится на внутренней стороне костного каркаса грудной клетки, другая в области так называемого сухожильного центра. Сухожильный центр диафрагмы имеет отверстие, через которое проходит пищевод и сосудисто-нервные пучки. В состоянии относительного покоя диафрагма имеет куполообразную форму. Эта форма сформировалась во многом благодаря тому, что внутрибрюшное давление больше, чем внутригрудное. При сокращении мышечных волокон диафрагмы ее форма становится плоской и она опускается, увеличивая вертикальные размеры грудной клетки. Костный каркас грудной клетки сформирован позвоночником, ребрами и грудиной. Ребра, составляющие основу данного каркаса с позвонками формируют по два сустава – одни с телами позвонков, другие с их поперечными отростками. Спереди ребра достаточно жестко при помощи хрящей фиксированы к грудине. Наружные косые межреберные мышцы являются мышцами, которые при сокращении меняют объем грудной клетки во фронтальном и сагитальном размерах. При их сокращении ребра поднимаются вместе с грудиной и несколько раздвигаются. Следует отметить, что диафрагма и наружные косые межреберные мышцы обеспечивают акт вдоха в условиях относительного физиологического покоя. При этом выдох в этих условиях является пассивным актом и связан с расслаблением данных мышц. При повышении активности организма увеличивается метаболизм в тканях, возрастает метаболический запрос в тканях, дыхание становится более частым и глубоким. В этих условиях в акт дыхания подключаются дополнительные группы мышц. К дополнительным мышцам, обеспечивающим вдох (инспирацию) относят большие и малые грудные, лестничные, грудино-ключично-сосцевидные, зубчатые. К дополнительным мышцам, обеспечивающим акт выдоха (экспирацию) относят внутренние косые межреберные мышцы, мышцы передней брюшной стенки.

Основные понятия, необходимые для рассмотрения процессов вентиляции легких.

Плевральная полость – пространство заключенное между висцеральным и париетальным листками плевры.

Плевральное давление – давление содержимого плевральной полости на органы грудной полости и стенки грудной клетки. В норме у здорового человека плевральное давление на несколько мм. рт. ст. ниже, чем атмосферное давление.

Эластическая тяга легких (упругое сопротивление легких) – это сила с которой легочная ткань препятствуетее растяжению атмосферным давлением. Эластическая тяга легких создается эласти-ческими элементами легочной ткани и специфическим веществом сурфактантом, который выстилает альвеолы изнутри.

Неэластическое сопротивление – сопротивление тканей дыхательных путей и вязкое сопротивление тканей, участвующих в процессе дыхания (ткани грудной и брюшной полостей). Имеет значение при форсированном дыхании и при различной патологии органов дыхания. В условиях относительного физиологического покоя по существу не влияет на формирование частоты и глубины дыхательных движений.

Отрицательное давление – разница между плевральным и атмосферным давлением. Поскольку плевральное давление несколько ниже атмосферного эта величина отрицательна.

Р отр = Р пл – Р атм

В положении спокойного выдоха, при полном расслаблении, устанавливается равновесие двух противоположно направленных сил тяги: эластической тяги легких, эластической тяги грудной клетки. Их алгебраическая сумма равна нулю.

Объем воздуха, находящегося при этом в легких, именуется функциональной остаточной емкостью. Давление в альвеолах нулевое, т. е. атмосферное. Движение воздуха по бронхам прекращается. Направленность эластических сил проявляется после вскрытия плевральной полости: легкое сжимается, грудная клетка расширяется. Местом «сцепления» этих сил являются париетальный и висцеральный листки плевры. Прочность этого сцепления огромна - она может выдержать давление до 90 мм рт. ст. Для того чтобы началось дыхание (перемещение воздуха по бронхиальному дереву), необходимо нарушить равновесие эластических сил, что достигается путем приложения дополнительной силы - силы дыхательной мускулатуры (при самостоятельном дыхании) или силы аппарата (при принудительном дыхании). В последнем случае место приложения силы может быть двояким:

  • снаружи (сжимание или расширение грудной клетки, например дыхание в респираторе)
  • изнутри (повышение или снижение альвеолярного давления, например управляемое дыхание наркозным аппаратом).

Для обеспечения необходимого объема альвеолярной вентиляции требуется затратить какую-то энергию на преодоление сил, противодействующих дыханию. Это противодействие складывается главным образом из:

  • эластического (преимущественно сопротивления легких)
  • неэластического (в основном сопротивление бронхов воздушному потоку) сопротивления.

Сопротивление брюшной стенки, суставных поверхностей скелета грудной клетки и сопротивление тканей на растяжение незначительно и потому не учитывается. Эластическое сопротивление грудной клетки в обычных условиях является способствующим фактором и потому тоже не оценивается в данном сообщении.

Эластическое сопротивление

Эластика грудной клетки связана с характерным строением и расположением ребер, грудины и позвоночника. Хрящевая фиксация с грудиной, пластинчатое строение и форма полукруга ребер придают грудной клетке упругость или эластичность. Эластическая тяга груди направлена на расширение объема грудной полости. Упругие свойства легочной ткани связаны с наличием в ней специальных эластических волокон, стремящихся сжать легочную ткань.

Суть дыхания следующая — на вдохе мышечные усилия растягивают грудную клетку, а вместе с ней и легочную ткань. Выдох осуществляется под влиянием эластической тяги легочной ткани и смещения органов брюшной полости, объем грудной клетки возрастает под действием эластической тяги груди. При этом функциональная остаточная емкость увеличивается, а альвеолярный газообмен ухудшается.

Эластические свойства легких определяются изменением альвеолярного давления на изменение наполнения легочной ткани на единицу объема. Эластичность легких выражается в сантиметрах водяного столба на 1 л. У здорового человека эластичность легких составляет 0,2 л/см водяного столба. Это означает, что при изменении наполнения легких на 1 л внутрилегочное давление изменяется на 0,2 см водяного столба. На вдохе это давление будет возрастать, а на выдохе - снижаться.

Сопротивление эластической тяги легких прямо пропорционально наполнению легких и не зависит от скорости потока воздуха.

Работа по преодолению эластической тяги возрастает в виде квадрата прироста объема и потому она выше при глубоком дыхании и ниже при поверхностном.

На практике наибольшее распространение получил показатель растяжимости легких (комплайенс).

Растяжимость легочной ткани является величиной, обратной понятию эластичности, и определяется изменением воздухонаполнения легких под влиянием изменения альвеолярного давления на единицу давления. У здоровых людей эта величина составляет примерно 0,16 л/см водяного столба с размахом от 0,11 до 0,33 л/см водяного столба.

Растяжимость ткани легкого в различных отделах неодинакова. Так, корень легкого имеет незначительную растяжимость. В зоне разветвления бронхов, где уже имеется паренхиматозная ткань, растяжимость оказывается средней, а сама легочная паренхима (по периферии легкого) обладает наибольшей растяжимостью. Ткань в нижних отделах обладает большей растяжимостью, чем в области верхушек. Это положение удачно сочетается с тем фактом, что нижние отделы груди наиболее значительно меняют свой объем при дыхании.

Показатель растяжимости легочной ткани подвержен большим изменениям в условиях патологии. Растяжимость уменьшается, если легочная ткань становится более плотной, например:

  • при легочном застое вследствие сердечно-сосудистой недостаточности
  • при фиброзе легких.

Это означает, что на ту же величину сдвига давления происходит меньшее растяжение легочной ткани, т. е. меньшее изменение объема. Растяжимость легких иногда снижается до 0,7-0,19 л/см водяного столба. Тогда у таких больных наблюдается значительная одышка даже в покое. Снижение растяжимости легочной ткани наблюдается также под воздействием рентгенотерапии, из-за развивающегося склеротического процесса в легочной ткани. Снижение растяжимости в этом случае является ранним и выраженным признаком пневмосклероза.

В случаях развития атрофических процессов в легочной ткани (например, при эмфиземе легких), сопровождающихся утратой эластичности, растяжимость будет повышена и может достигнуть 0,78-2,52 л/см водяного столба.

Бронхиальное сопротивление

Величина бронхиального сопротивления зависит от:

  • скорости потока воздуха по бронхиальному дереву;
  • анатомического состояния бронхов;
  • характера потока воздуха (ламинарного или турбулентного).

При ламинарном потоке сопротивление зависит от вязкости, а при турбулентном - от плотности газа. Турбулентные потоки обычно развиваются в местах ветвления бронхов и на местах анатомических изменений стенок воздуховодов. В норме же на преодоление бронхиального сопротивления расходуется около 30-35% всей работы, но при эмфиземе и бронхитах этот расход резко увеличивается и достигает 60-70% всей затраченной работы.

Сопротивление воздушному потоку со стороны бронхиального дерева у здоровых людей остается при обычном объеме дыхания постоянным и составляет в среднем 1,7 см л/сек Н2О при потоке воздушной струи 0,5 л/сек. Согласно закону Пуазейля, сопротивление будет меняться прямо пропорционально квадрату скорости потока и IV степени радиуса просвета воздухоносной трубки и обратно пропорционально длине этой трубки. Таким образом, при анестезировании больных с нарушенной бронхиальной проходимостью (бронхит, бронхиальная астма, эмфизема) для обеспечения наиболее полного выдоха дыхание должно быть редким, чтобы хватило времени для полноценного выдоха, или следует применять отрицательное давление на выдохе в целях обеспечения надежного вымывания углекислоты из альвеол.

Повышенное сопротивление потоку газовой смеси будет также наблюдаться при интубации трубкой небольшого диаметра (по отношению к просвету трахеи). Несоответствие размера трубки на два номера (по английской номенклатуре) приведет к повышению сопротивления примерно в 7 раз. Сопротивление возрастает с увеличением длины трубки. Поэтому наращивание ее (иногда наблюдаемое при на лице) должно производиться со строгим учетом возрастающего при этом сопротивления потоку газов и увеличения объема анестезиологического вредного пространства.

Во всех сомнительных случаях вопрос должен решаться в пользу укорочения трубки и увеличения ее диаметра.

Работа дыхания

Работа дыхания определяется энергией, затраченной на преодоление эластических и неэластических сил, противодействующих вентиляции, т. е. той энергии, которая заставляет дыхательный аппарат совершать дыхательные экскурсии. Установлено, что при спокойном дыхании главные энергетические затраты уходят на преодоление сопротивления со стороны легочной ткани и совсем небольшая энергия расходуется на преодоление сопротивлений со стороны грудной клетки и брюшной стенки.

На долю эластического сопротивления легких приходится около 65%, а на долю сопротивления бронхов и тканей -35%.

Работа дыхания, выраженная в миллилитрах кислорода на 1 л вентиляции, для здорового человека составляет 0,5 л/мин или 2,5 мл при МОД, равном 5000 мл.

У больных с пониженной растяжимостью легочной ткани (жесткое легкое) и высоким бронхиальным сопротивлением работа по обеспечению вентиляции может оказаться очень высокой. При этом нередко выдох становится активным. Такого рода изменения аппарата дыхания имеют не только теоретическое значение, например при обезболивании больных с эмфиземой легких, у которых имеется повышенная растяжимость легочной ткани (атрофия легких) и увеличенное бронхиальное сопротивление наряду с фиксированной грудной клеткой. Поэтому в обычных условиях выдох становится активным и усиливается за счет сокращения мышц живота. Если больному будет дан глубокий наркоз или будет произведена , то этот компенсаторный механизм будет нарушен. Снижение глубины вдоха приведет к опасной задержке углекислоты. Поэтому у больных с эмфиземой легких при лапаротомиях вентиляция должна быть принудительной. В послеоперационном периоде эти больные должны находиться под особенно строгим надзором и в случае необходимости их переводят на принудительное дыхание через трахеотомическую трубку с манжеткой (с помощью различного рода спиропульсаторов). Поскольку время выдоха у этих больных затянуто (из-за снижения эластичности и затруднения воздушного потока по бронхиальному дереву), при проведении принудительного дыхания для обеспечения хорошей вентиляции альвеол желательно создать отрицательное давление аа выдохе. Однако отрицательное давление не должно быть чрезмерным, иначе оно может вызвать спадение стенок бронхов и блокирование значительного объема газа в альвеолах. В этом случае результат будет обратным - альвеолярная вентиляция снизится.

Своеобразные изменения наблюдаются при обезболивании больных с сердечным застоем легких, у которых показатель растяжимости, определенный до наркоза, оказывается сниженным (жесткое легкое). Благодаря проведению управляемой вентиляции легкое у них становится более «мягким» оттого, что часть застойной крови отжимается в большой круг кровообращения. Растяжимость легких увеличивается. И тогда при том же давлении легкие расправляются на больший объем. Это обстоятельство следует иметь в виду в случаях ведения наркоза с помощью спиронульсатора, так как с увеличением растяжимости возрастает объем легочной вентиляции, что в ряде случаев может отразиться на глубине наркоза и гемеостазе кислотно-щелочного баланса.

Вентиляция и механика дыхания

Соотношение между глубиной вдоха и частотой дыхания определяется механическими свойствами аппарата дыхания. Эти соотношения устанавливаются так, чтобы работа, затрачиваемая на обеспечение требуемой альвеолярной вентиляции, была минимальной.

При пониженной растяжимости легких (жесткое легкое) поверхностное и частое дыхание будет наиболее экономичным (так как скорость потока воздуха не вызывает большого сопротивления), а при повышенном бронхиальном сопротивлении наименьшее количество энергии расходуется при медленных потоках воздуха (редкое и глубокое дыхание). Этим и объясняется, почему больные с пониженным показателем растяжимости легочной ткани дышат часто и поверхностно, а больные с повышенным бронхиальным сопротивлением - редко и глубоко.

Аналогичная взаимозависимость наблюдается у здорового человека. Глубокое дыхание бывает редким, а поверхностное - частым. Эти взаимоотношения устанавливаются под контролем центральной нервной системы.

Рефлекторная иннервация определяет оптимальные соотношения между частотой дыхания, глубиной вдоха и скоростью потока дыхательного воздуха при формировании нужного уровня альвеолярной вентиляции, при которых требуемая альвеолярная вентиляция обеспечивается при возможно минимальной работе дыхания. Так, у больных с ригидными легкими (растяжимость снижена) наилучшее соотношение между частотой и глубиной вдоха наблюдается при частом дыхании (энергия экономится за счет меньшего растягивания легочной ткани). Наоборот, у больных с повышенным сопротивлением со стороны бронхиального дерева (бронхиальная астма) лучшее соотношение наблюдается при глубоком редком дыхании. Наилучшее состояние у здоровых людей в условиях покоя наблюдается при частоте дыхания 15 в минуту и глубине 500 мл. Работа дыхания будет составлять около 0,1-0,6 гм/мин.

Статью подготовил и отредактировал: врач-хирург

Поддержание постоянства состава альвеолярного воздуха обеспечивается за счет непрерывно осуществляемых дыхательных циклов — вдоха и выдоха. Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе примерно такой же объем воздуха вытесняется из легких. За счет обновления части альвеолярного воздуха поддерживается его постоянный .

Акт вдоха совершается вследствие увеличения объема грудной полости за счет сокращения наружных косых межреберных мышц и других вдыхательных мышц, обеспечивающих отведение ребер в стороны, а также благодаря сокращению диафрагмы, что сопровождается изменением формы ее купола. Диафрагма становится конусовидной, положение сухожильного центра не изменяется, а мышечные участки смещаются в сторону брюшной полости, оттесняя органы назад. При увеличении объема грудной клетки давление в плевральной щели уменьшается, возникает разница между давлением атмосферного воздуха на внутреннюю стенку легких и давлением воздуха в плевральной полости на наружную стенку легких. Давление атмосферного воздуха на внутреннюю стенку легких начинает преобладать и вызывает увеличение объема легких, а следовательно, и поступление атмосферного воздуха в легкие.

Таблица 1. Мышцы, обеспечивающие вентиляцию легкого

Примечание. Принадлежность мышц к основным и вспомогательным группам может меняться в зависимости от типа дыхания.

Когда вдох окончен и дыхательные мышцы расслабляются, ребра и купол диафрагмы возвращаются в положение до вдоха, при этом уменьшается объем грудной клетки, повышается давление в плевральной щели, возрастает давление на наружную поверхность легких, часть альвеолярного воздуха вытесняется и происходит выдох.

Возвращение ребер в положение до вдоха обеспечивается эластическим сопротивлением реберных хрящей, сокращением внутренних косых межреберных мышц, вентральных зубчатых мышц, мышц живота. Диафрагма возвращается в положение до вдоха благодаря сопротивлению стенок живота, органов брюшной полости, смешенных при вдохе назад, и сокращению мышц живота.

Механизм вдоха и выдоха. Дыхательный цикл

Дыхательный цикл включает вдох, выдох и паузу между ними. Его длительность зависит от частоты дыхания и составляет 2,5-7 с. Продолжительность вдоха у большинства людей короче продолжительности выдоха. Длительность паузы очень изменчива, она может отсутствовать между вдохом и выдохом.

Для инициирования вдоха необходимо, чтобы в инспираторном (активирующем вдох) отделе в возник залп нервных импульсов и их посылка по нисходящим путям в составе вентрального и передней части бокового канатиков белого вещества спинного мозга в его шейный и грудной отделы. Эти импульсы должны достигнуть мотонейронов передних рогов сегментов СЗ-С5, формирующих диафрагмальные нервы, а также мотонейронов грудных сегментов Th2-Th6, формирующих межреберные нервы. Активированные дыхательным центром мотонейроны спинного мозга посылают потоки сигналов по диафрагмальному и межреберным нервам к нервно-мышечным синапсам и вызывают сокращение диафрагмальной, наружных межреберных и межхрящевых мышц. Это приводит к увеличению объема грудной полости за счет опускания купола диафрагмы (рис. 1) и движения (подъем с поворотом) ребер. В результате давление в плевральной щели уменьшается (до 6-20 см вод. ст. в зависимости от глубины вдоха), транспульмональное давление возрастает, становится больше сил эластической тяги легких и они растягиваются, увеличивая объем.

Рис. 1. Изменения размеров грудной клетки, объема легких и давления в плевральной щели при вдохе и выдохе

Увеличение объема легких приводит к снижению давления воздуха в альвеолах (при спокойном вдохе оно становится ниже атмосферного на 2-3 см вод. ст.) и атмосферный воздух по градиенту давления поступает в легкие. Происходит вдох. При этом объемная скорость воздушного потока в дыхательных путях (О) будет прямо пропорциональна градиенту давления (ΔР) между атмосферой и альвеолами и обратно пропорциональна сопротивлению (R) дыхательных путей для потока воздуха.

При усиленном сокращении мышц вдоха грудная клетка еще более расширяется и объем легких возрастает. Глубина вдоха увеличивается. Это достигается благодаря сокращению вспомогательных инспираторных мышц, к которым относятся все мышцы, прикрепляющиеся к костям плечевого пояса, позвоночнику или черепу, способные при своем сокращении поднимать ребра, лопатку и фиксировать плечевой пояс с отведенными назад плечами. Важнейшими среди этих мышц являются: большие и малые грудные, лестничные, грудино-клю- чично-сосцсвидные и передние зубчатые.

Механизм выдоха отличается тем, что спокойный выдох происходит пассивно за счет сил, накопленных при вдохе. Для остановки вдоха и переключения вдоха на выдох необходимо прекращение посылки нервных импульсов из дыхательного центра к мотонейронам спинного мозга и мышцам вдоха. Это приводит к расслаблению мышц вдоха, в результате чего объем грудной клетки начинает уменьшаться под влиянием следующих факторов: эластической тяги легких (после глубокого вдоха и эластической тяги грудной клетки), силы тяжести грудной клетки, приподнятой и выведенной из устойчивого положения при вдохе, и давления органов брюшной полости на диафрагму. Для осуществления усиленного выдоха необходима посылка потока нервных импульсов из центра выдоха к мотонейронам спинного мозга, иннервирующим мышцы выдоха — внутренние межреберные и мышцы брюшного пресса. Их сокращение приводит к еще большему уменьшению объема грудной клетки и удалению большего объема воздуха из легких за счет подъема купола диафрагмы и опускания ребер.

Уменьшение объема грудной клетки приводит к снижению транспульмонального давления. Эластическая тяга легких становится больше этого давления и вызывает уменьшение объема легких. Это увеличивает давление воздуха в альвеолах (на 3-4 см вод. ст. больше атмосферного) и воздух по градиенту давления выходит из альвеол в атмосферу. Совершается выдох.

Тип дыхания определяется по величине вклада различных дыхательных мышц в увеличение объема грудной полости и заполнение легких воздухом при вдохе. Если вдох происходит главным образом за счет сокращения диафрагмы и смещения (вниз и вперед) органов брюшной полости, то такое дыхание называют брюшным или диафрагмальным ; если же за счет сокращения межреберных мышц - грудным. У женщин преобладает грудной тип дыхания, у мужчин — брюшной. У людей, выполняющих тяжелую физическую работу, как правило, устанавливается брюшной тип дыхания.

Работа дыхательных мышц

Для осуществления вентиляции легких необходимо затрачивать работу, которая выполняется за счет сокращения дыхательных мышц.

При спокойном дыхании в условиях основного обмена на работу дыхательных мышц затрачивается 2-3% от всей энергии, расходуемой организмом. При усиленном дыхании эти затраты могут достигать 30% от уровня энергетических затрат организма. У людей с заболеваниями легких и дыхательных путей эти затраты могут быть еще большими.

Работа дыхательных мышц затрачивается на преодоление эластических сил (легких и грудной клетки), динамических (вязкостных) сопротивлений движению потока воздуха через дыхательные пути, инерционной силы и тяжести смещаемых тканей.

Величина работы дыхательных мышц (W) рассчитывается по интегралу произведения изменения объема легких (V) и внутриплеврального давления (Р):

На преодоление эластических сил расходуется 60-80% от общих затратW , вязкостных сопротивлений — до 30%W .

Вязкостные сопротивления представлены:

  • аэродинамическим сопротивлением дыхательных путей, которое составляет 80-90% суммарных вязкостных сопротивлений и увеличивается при возрастании скорости потока воздуха в дыхательных путях. Объемная скорость этого потока рассчитывается по формуле

где Р a — разность между давлением в альвеолах и атмосфере; R — сопротивление дыхательных путей.

При дыхании через нос оно составляет около 5 см вод. ст. л -1 *с -1 , при дыхании через рот — 2 см вод. ст. л -1 *с -1 . На трахею, долевые и сегментарные бронхи приходится в 4 раза большее сопротивление, чем на более дистальные участки дыхательных путей;

  • сопротивлением тканей, которое составляет 10-20% от общего вязкостного сопротивления и обусловлено внутренним трением и неупругой деформацией тканей грудной и брюшной полости;
  • инерционным сопротивлением (1-3% от общего вязкостного сопротивления), обусловленным ускорением объема воздуха в дыхательных путях (преодоление инерции).

При спокойном дыхании работа по преодолению вязкостных сопротивлений незначительна, но при усиленном дыхании или при нарушении проходимости дыхательных путей может резко возрастать.

Эластическая тяга легких и грудной клетки

Эластическая тяга легких — сила, с которой легкие стремятся сжаться. Две трети эластической тяги легких обусловлены поверхностным натяжением сурфактанта и жидкости внутренней поверхности альвеол, около 30% создается эластическими волокнами легких и примерно 3% тонусом гладко- мышечных волокон внутрилегочных бронхов.

Эластическая тяга легких — сила, с которой ткань легкого противодействует давлению плевральной полости и обеспечивает спадение альвеол (обусловлена наличием в стенке альвеол большого количества эластических волокон и поверхностным натяжением).

Величина эластической тяги легких (Е) обратно пропорциональна величине их растяжимости (С л):

Растяжимость легких у здоровых людей составляет 200 мл/см вод. ст. и отражает увеличение объема легких (V) в ответ на возрастание транспульмонального давления (Р) на 1 см вод. ст.:

При эмфиземе легких их растяжимость увеличивается, при фиброзе уменьшается.

На величину растяжимости и эластической тяги легких сильное влияние оказывает наличие на внутриальвеолярной поверхности сурфактанта, представляющего собой структуру из фосфолипидов и белков, образуемых альвеолярными пневмоцитами 2-го типа.

Сурфактант играет важную роль в поддержании структуры, свойств легких, облегчении газообмена и выполняет следующие функции:

  • снижает поверхностное натяжение в альвеолах и увеличивает растяжимость легких;
  • препятствует слипанию стенок альвеол;
  • увеличивает растворимость газов и облегчает их диффузию через стенку альвеолы;
  • препятствует развитию отека альвеол;
  • облегчает расправление легких при первом вдохе новорожденного;
  • способствует активации фагоцитоза альвеолярными макрофагами.

Эластическая тяга грудной клетки создастся за счет эластичности межреберных хрящей, мышц, париетальной плевры, структур соединительной ткани, способных сжиматься и расширяться. В конце выдоха сила эластичной тяги грудной клетки направлена наружу (в сторону расширения грудной клетки) и максимальна по величине. При развитии вдоха она постепенно уменьшается. Когда вдох достигает 60-70% от его максимально возможной величины, эластическая тяга грудной клетки становится равной нулю, а при дальнейшем углублении вдоха направлена внутрь и препятствует расширению грудной клетки. В норме растяжимость грудной клетки (С |к) приближается к 200 мл/см вод. ст.

Общая растяжимость грудной клетки и легких (С 0) вычисляется по формуле 1/С 0 = 1/C л + 1 /С гк. Средняя величина С 0 составляет 100 мл/см вод. ст.

В конце спокойного выдоха величины эластической тяги легких и грудной клетки равны, но противоположны по направленности. Они уравновешивают друг друга. В это время грудная клетка находится в наиболее устойчивом положении, которое называют уровнем спокойного дыхания и принимают за точку отсчета при различных исследованиях.

Отрицательное давление в плевральной щели и пневмоторакс

Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает листок висцеральной плевры, а внутреннюю поверхность грудной клетки — листок париетальной плевры. Листки переходят один в другой у ворот легкого и между ними образуется щелевидное пространство, заполненное плевральной жидкостью. Часто это пространство называют плевральной полостью, хотя полость между листками образуется лишь в особых случаях. Слой жидкости в плевральной щели несжимаем и нерастяжим и плевральные листки не могут отойти друг от друга, хотя способны легко скользить вдоль (подобно двум стеклам, приложенным смоченными поверхностями, их трудно разъединить, но легко смещать вдоль плоскостей).

При обычном дыхании давление между плевральными листками ниже, чем атмосферное; его называют отрицательным давлением в плевральной щели.

Причинами возникновения отрицательного давления в плевральной щели являются наличие эластической тяги легких и грудной клетки и способность плевральных листков захватывать (сорбировать) молекулы газов из жидкости плевральной щели или воздуха, попадающего в нее при ранениях грудной клетки или при проколах с лечебной целью. Из-за наличия отрицательного давления в плевральной щели в нее идет постоянная фильтрация небольшого количества газов из альвеол. В этих условиях сорбционная активность плевральных листков предотвращает накопление в ней газов и предохраняет легкие от спадания.

Важная роль отрицательного давления в плевральной щели состоит в удерживании легких в растянутом состоянии даже во время выдоха, что необходимо для заполнения ими всего объема грудной полости, определяемого размерами грудной клетки.

У новорожденного соотношение объемов легочной паренхимы и грудной полости больше, чем у взрослых, поэтому в конце спокойного выдоха отрицательное давление в плевральной щели исчезает.

У взрослого человека в конце спокойного выдоха отрицательное давление между листками плевры составляет в среднем 3-6 см вод. ст. (т.е. на 3-6 см меньше, чем атмосферное). Если человек находится в вертикальном положении, то отрицательное давление в плевральной щели вдоль вертикальной оси тела значительно различается (изменяется на 0,25 см вод. ст. на каждый сантиметр высоты). Оно максимально в области верхушек легких, поэтому при выдохе они остаются более растянутыми и при последующем вдохе их объем и вентиляция увеличиваются в небольшой степени. В области основания легких величина отрицательного давления может приближаться к нулю (или оно даже может стать положительным в случае потери легкими эластичности из-за старения или заболеваний). Своей массой легкие давят на диафрагму и прилежащую к ней часть грудной клетки. Поэтому в области основания в конце выдоха они менее всего растянуты. Это создаст условия для их большего растяжения и усиленной вентиляции при вдохе, увеличения газообмена с кровью. Под влиянием силы тяжести к основанию легких притекает больше крови, кровоток в этой зоне легких превышает вентиляцию.

У здорового человека лишь при форсированном выдохе давление в плевральной щели может стать больше атмосферного. Если же выдох производится с максимальным усилием в малое по объему замкнутое пространство (например, в прибор пневмотонометр), то давление в плевральной полости может превысить 100 см вод. ст. С помощью такого дыхательного маневра пневмотонометром определяют силу мышц выдоха.

В конце спокойного вдоха отрицательное давление в плевральной щели составляет 6-9 см вод. ст., а при максимально интенсивном вдохе может достигать большей величины. Если же вдох осуществляется с максимальным усилием в условиях перекрытия дыхательных путей и невозможности поступления воздуха в легкие из атмосферы, то отрицательное давление в плевральной щели на короткое время (1-3 с) достигает 40-80 см вод. ст. С помощью такого теста и прибора пневмогонометра определяют силу мышц вдоха.

При рассмотрении механики внешнего дыхания учитывается также транспульмональное давление — разность между давлением воздуха в альвеолах и давлением в плевральной щели.

Пневмотораксом называют поступление воздуха в плевральную щель, приводящее к спадению легких. В нормальных условиях, несмотря на действие сил эластической тяги, легкие остаются расправленными, так как из-за наличия в плевральной щели жидкости листки плевры не могут разъединиться. При попадании в плевральную щель воздуха, который может быть сжат или расширен в объеме, степень отрицательного давления в ней уменьшается или оно становится равным атмосферному. Под действием эластических сил легкого висцеральный листок отгягивастся от париетального и легкие уменьшаются в размере. Воздух может попасть в плевральную щель через отверстие поврежденной грудной стенки или через сообщение поврежденного легкого (например, при туберкулезе) с плевральной щелью.

Эластическая тяга легких – сила, с которой легкие стремятся сжаться.

Она возникает за счет следующих причин: 2/3эластической тяги легких обусловлено сурфактантом – поверхностным натяжением жидкости, выстилающей альвеолы, около 30%-эластическими волокнами легких и бронхов, 3%-тонусом гладкомышечных волокон бронхов. Сила эластической тяги всегда направлена с наружи внутрь. Т.е. на величину растяжимости и эластической тяги легких сильное влияние оказывает наличие на внутриальвеолярной поверхности сурфактанта – вещества, представляющего собой смесь фосфолипидов и белков.

Роль сурфактанта :

1) снижает поверхностное натяжение в альвеолах и таким образом увеличивает растяжимость легких;

2) стабилизирует альвеолы, препятствует слипанию их стенок;

3) снижает сопротивление диффузии газов через стенку альвеол;

4) препятствует отеку альвеол путем снижения величины поверхностного натяжения в альвеолах;

5) облегчает расправление легких при первом вдохе новорожденного;

6) способствует активации фагоцитоза альвеолярными макрофагами и их двигательной активности.

Синтез и замена сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, избыток и недостаточность кислорода, некоторые фармакологические препараты могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Все это ведет к их ателектазу или спадению.

Пневмотороксом

Пневмотороксом называется поступление воздуха в межплевральное пространство, возникающее при проникающих ранениях грудной клетки, нарушениях герметичность плевральной полости. При этом легкие спадаются, так как внутриплевральное давление становится одинаковым с атмосферным. Эффективный газообмен в этих условиях является невозможным. У человека правая и левая плевральные полости не сообщаются, и благодаря этому односторонний пневмоторокс, например, слева, не ведет к прекращению легочного дыхания правого легкого. Со временем воздух из плевральной полости рассасывается, и спавшееся легкое вновь расправляется и заполняет всю грудную полость. Двусторонний пневмоторокс несовместим с жизнью.

Конец работы -

Эта тема принадлежит разделу:

Физиология дыхания

Спирометрия метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра.. спирография методика непрерывной регистрации объемов выдыхаемого и.. пневмотахография методика непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиология дыхания
Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клетках. Дыхание – комплекс

Внешнее дыхание
Внешнее дыхание осуществляется циклически и состоит из фазы вдоха, выдоха и дыхательной паузы. У человека частота дыхательных движений в среднем равна 16-18 в одну минуту. Внешнее дыхание

Отрицательное давление в плевральной щели
Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает висцеральный плевральный листок, а внутреннюю поверхность грудной клетки - париетальная пл

Легочные объемы и емкости
При спокойном дыхании человек вдыхает и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным объемом (ДО) (рис.3).

Транспорт газов кровью
Кислород и углекислый газ в крови находятся в двух состояниях: в химически связанном и в растворенном. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный

Транспорт кислорода
Из общего количества кислорода, который содержится в артериальной крови, только 5% растворено в плазме, остальное количество кислорода переносится эритроцитами, в которых он находится в химической

Гидрокарбонатный буфер
Из вышеприведенных газообменных реакция следует, что их течение на уровне легких и тканей оказывается разнонаправленным. Чем в этих случаях определяется направленность образования и диссоциации фор

Виды соединений Hb
Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. Основная функция гемоглобина - перенос кислорода и частично углекислого

Основные системы регуляции кислотно – щелочного равновесия в организме
Кислотно – щелочное равновесие (КЩР) (кислотно –щелочной баланс, кислотно –щелочное состояние (КЩС), кислотно – основное равновесие) – это постоянство концентрации Н+ (протонов) в жидких

Регуляция дыхания
Как и все системы в организме, дыхание регулируется двумя основными механизмами – нервным и гуморальным. Основой нервной регуляции является реализация рефлекса Геринга –Бреера, который по