Особенности восприятия звука человеком (психоакустика). Особенности восприятия человека. Слух Ощущения воспринимающие музыкальные и шумовые звуки

Восприятие звука основано на двух процессах, происходящих в улитке:

разделении звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки;

преобразовании рецепторными клетками механических колеба­ний в нервное возбуждение.

Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к сме­щениям основной мембраны, на которой расположены рецепторные во­лосковые клетки: внутренние и наружные, отделенные друг от друга кортиевыми дугами. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной мембраной, которая по всему ходу перепонча­того канала расположена над волосковыми клетками. При действии звуков основная мембрана начинает колебаться, волоски рецепторных клеток ка­саются покровной мембраны и механически раздражаются. В результате в них возникает процесс возбуждения, который по афферентным волокнам направляется к нейронам спирального узла улитки и далее в ЦНС.

От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны: звуки высокой частоты дают наибольший эффект на начале основной мембраны, а низких частот доходят до вершины улитки. Таким образом, при различных по частоте звуках возбуждаются разные волосковые клетки и разные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.

Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная проводимость – проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутреннего уха. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке (например, при нырянии, подводном плавании).

Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц. У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1 000 до 3 000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

4. Значение и общий план организации вестибулярной сенсорной системы

Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развившаяся в условиях действия силы тяжести на Земле. Наряду со зрительной сенсорной системой и кинестетическим анализатором она играет ведущую роль в пространственной ориентировке человека. Импульсы от вестибулорецепторов используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются.

Вестибулярная сенсорная система состоит из следующих отделов:

1. периферического, который включает два образования, содержащих механорецепторы вестибулярной системы, – преддверие (мешочек и маточка) и полукружные каналы;

2. проводникового, который начинается от рецепторов волокнами биполярной клетки (первого нейрона) вестибулярного узла, расположенного в височной кости, аксоны этих нейронов образуют вестибулярный нерв и вместе со слуховым нервом в составе 8-ой пары черепномозговых нервов входят в продолговатый мозг; в вестибулярных ядрах продолговатого мозга находятся вторые

3. нейроны, импульсы от которых поступают к третьим нейронам – в таламусе. Сигналы от вестибулярных ядер направляются не только к таламусу (это не единственный путь), они направляются во многие отделы ЦНС: спинной мозг, мозжечок, ретикулярную формацию и вегетативные ганглии. 3. коркового, представленного четвертыми нейронами, часть которых расположена в первичном поле вестибулярной системы в височной области коры, а другая – в непосредственной близости к пирамидным нейронам моторной области коры и в постцентральной извилине. Точная локализация вестибулярной зоны коры человека в настоящее время окончательно не выяснена.

5. Функционирование вестибулярного аппарата

Итак, периферическим отделом вестибулярной сенсорной системы является вестибулярный аппарат, находящийся во внутреннем ухе в лабиринте пирамиды височной кости. Он состоит из преддверия и трех полукружных каналов.

1. Каналы и полости в височной кости образуют костный лабиринт вестибулярного аппарата, который частично заполнен перепончатым лабиринтом. Между костным и перепончатым лабиринтами находится жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа.

2. Аппарат преддверия предназначен для анализа действия силы тяжести при изменениях положения тела в пространстве и ускорений прямолинейного движения. Он разделен на 2 полости – мешочек и маточку, содержащих отолитовые приборы, механорецепторы которых представляют собой волосковые клетки. Выступающая в полость часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60 – 80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную отолитовую мембрану, в которой находятся кристаллы углекислого кальция – отолиты (рис. 33).

3. В маточке отолитовая мембрана расположена в горизонтальной плоскости, а в мешочке она согнута и находится во фронтальной и сагиттальной плоскостях.

4. При изменении положения головы и тела, а также при вертикальных или горизонтальных ускорениях отолитовые мембраны свободно перемещаются под действием силы тяжести во всех трех плоскостях (т.е. скользят по волоскам), деформируя при этом волоски механорецепторов. Чем больше деформация волосков, тем выше частота афферентных импульсов в волокнах вестибулярного нерва.

Рис. 33. Строение отолитового аппарата:

1 – отолиты; 2 – отолитовая мембрана; 3 – волоски рецепторных клеток;

4 – рецепторные клетки; 5 – опорные клетки; 6 – нервные волокна

Аппарат полукружных каналов служит для анализа действия центробежной силы при вращательных движениях. Адекватным его раздражителем является угловое ускорение. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях (передняя во фронтальной плоскости, боковая в горизонтальной, задняя в сагиттальной) и заполнены, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2 – 3 раза больше, чем у воды). Один из концов каждого канала расширен в «ампулу». Рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист (складок, гребешков), т.е. склеены. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении – тормозятся. Рецепторный потенциал, генерируемый при раздражении волосковых клеток, передает импульс окончаниям волокон вестибулярного нерва.

В настоящее время показано, что вращения или наклоны в одну сторону увеличивают афферентную импульсацию, а в другую сторону уменьшают ее. Это позволяет различать направление прямолинейного или вращательного движения.

6. Влияние вестибулярной системы на различные функции организма

Вестибулярная сенсорная система связана со многими центрами спинного и головного мозга и вызывает ряд вестибулосоматических и вестибуловегетативных рефлексов (рис. 34). Важнейшие из этих реакций – вестибулоспинальные.

Вестибулярные раздражения вызывают установочные рефлексы изменения тонуса мышц, лифтные рефлексы, а также особые движения глаз, направленные на сохранение изображения на сетчатке, – нистагм (движения глазных яблок со скоростью вращения, но в противоположном направлении, затем быстрое возвращение к исходной позиции и новое противоположное вращение).



Рис. 34. Афферентные связи вестибулярного аппарата:

Г – глаз; Тк – тонкая кишка; М – мышца; Пм – продолговатый мозг;

Ж – желудок; См – спинной мозг

В вестибуловегетативные реакции вовлекаются сердечнососудистая система, желудочно-кишечный тракт и другие органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает «болезнь движения» (примером которой может служить морская болезнь), которая проявляется изменением частоты сердцебиения и артериального давления, ухудшением чувства времени, изменением психических функций – внимания, оперативного мышления, кратковременной памяти, эмоциональных проявлений. В тяжелых случаях возникают головокружение, тошнота, рвота. Повышенная склонность к «болезни движения» может быть уменьшена специальной тренировкой (вращение, качели) и применением ряда лекарственных средств.

В условиях невесомости (когда у человека выключены вестибулярные влияния) возникает утрата представления о пространственном положении тела. Теряются навыки ходьбы, бега. Ухудшается состояние нервной системы, возникает повышенная раздражительность, нестабильность настроения. Таким образом, помимо основной анализаторной функции, важной для управления позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбуждения на другие нервные центры.

Побуждение к действию

Замысел действия

Схемы целенаправленных движений

(приобретенные и врожденные)

Регуляция позы

Моно- и полисинаптические рефлексы

Длина мышц Напряжение мышц



Программа

Выполнение


Рис. 35. Общий план организации двигательной сенсорной системы


Лекция 22

ДВИГАТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА.

СЕНСОРНЫЕ СИСТЕМЫ КОЖИ, ВКУСА И ОБОНЯНИЯ

1. Значение и общий план организации двигательной сенсорной системы

Двигательная сенсорная система служит для анализа состояния двигательного аппарата его движения и положения. Информация о степени сокращения скелетных мышц, натяжении сухожилий, изменении суставных углов необходима для регуляции двигательных актов и поз.

Двигательная сенсорная система состоит из следующих отделов:

1. периферического, представленного проприорецепторами, расположенными в мышцах, сухожилиях и суставных сумках;

2. проводникового, который начинается биполярными клетками (первыми нейронами), тела которых расположены вне ЦНС в спинномозговых узлах, один их отросток связан с рецепторами, другой входит в спинной мозг и передает импульсы ко вторым нейронам в продолговатый мозг (часть путей от проприорецепторов направляется в кору мозжечка), а далее к третьим нейронам – релейным ядрам таламуса;

3. коркового, находящегося в передней центральной извилине коры больших полушарий.

Общий план организации двигательной сенсорной системы представлен на рис. 35.

2. Функции проприорецепторов


В мышцах млекопитающих и человека содержатся 3 типа специали­зированных рецепторов: мышечные веретена, сухожильные рецепторы

Гольджи и суставные рецепторы (ре­цепторы суставной капсулы и сустав­ных связок). Все эти рецепторы реа­гируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата. Специфическим раздражителем проприорецепторов является их растяжение.

Мышечные веретена представ­ляют собой небольшие продолговатые образования (длиной несколько мил­лиметров, шириной - десятые доли миллиметра), расположенные в толще мышцы. Каждое веретено покрыто капсулой, образованной несколькими слоями клеток, которая в центральной части расширяется и образует ядер­ную сумку (рис. 36).

Рис. 36. Мышечное веретено:

1 – проксимальный конец интрафузального мышечного волокна, прикрепленного к волокну скелетной мышцы; 2 – дистальный конец этого волокна, прикрепленного к фасции; 3 – ядерная сумка; 4 – афферентные волокна; 5 – волокна гамма-мотонейрона; 6 – волокно альфа-мотонейрона, идущее к скелетной мышце

Внутри капсулы находится пучок (от 2 до 14) тонких волокон (в 2 - 3 раза тоньше обычных волокон скелетных мышц), которые называ­ют интрафузальными в отличие от всех остальных волокон мышцы (экстрафузальных) .

Веретена расположены параллельно экстрафузальным волокнам -один конец прикреплен к сухожилию, а другой - к волокну. Различают ин-трафузальные волокна двух типов:

ядерносумчатые - более толстые и длинные с ядрами в средней, утолщенной, части волокна - ядерной сумке, которые связаны с наиболее толстыми и быстропроводящими афферентными нервными волокнами - они информируют о динамическом компонен­те движения (скорости изменения длины мышцы);

ядерноцепочечные - более короткие, тонкие, с ядрами, вытяну­тыми в цепочку, информирующие о статическом компоненте (удерживаемой в данный момент длине мышцы).

На интрафузальных волокнах спирально расположены (намотаны) чувствительные окончания афферентных нервных волокон.

При растяжении скелетной мышцы происходит растяжение и мы­шечных рецепторов, при этом деформируются окончания нервных воло­кон, что вызывает появление в них нервных импульсов, идущих, в первую очередь, к мотонейронам спинного мозга. Частота импульсации возрастает с увеличением растяжения мышцы, а также при увеличении скорости ее растяжения. Тем самым нервные центры информируются о скорости рас­тяжения мышцы и ее длине. Импульсация от мышечных веретен продол­жается в течение всего периода поддержания растянутого состояния, что обеспечивает постоянную осведомленность центров о длине мышцы. Чем более тонкие и координированные движения осуществляют мышцы, тем больше в них мышечных веретен: у человека в глубоких мышцах шеи, свя­зывающих позвоночник с головой, среднее их число составляет 63, а в мышцах бедра и таза - менее 5 веретен на 1 г веса мышцы.

ЦНС может тонко регулировать чувствительность проприорецепторов, т.е. веретена имеют и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от гамма-мотонейронов. Возбуждение альфа-мотонейронов сопровождается возбу­ждением гамма-мотонейронов. Активация гамма-мотонейронов приводит к повышению чувствительности (возбудимости) афферентных нейронов: при той же длине скелетной мышцы в нервные центры при этом будет по­ступать большее число афферентных импульсов.

Разряды мелких гамма-мотонейронов спинного мозга вызывают со­кращение интрафузальных мышечных волокон по обе стороны от ядерной сумки веретена. В результате средняя несократимая часть мышечного веретена растягивается, и деформация отходящего отсюда нервного во­локна вызывает повышение его возбудимости. Это позволяет, во-первых, выделять проприоцептивную импульсацию на фоне другой афферентной информации и, во-вторых, увеличивать точность анализа состояния мышц. Повышение чувствительности веретен происходит во время движе­ния и даже в предстартовом состоянии. Это объясняется тем, что в силу низкой возбудимости гамма-мотонейронов их активность в состоянии по­коя выражена слабо, а при произвольных движениях и вестибулярных реакциях она активируется. Чувствительность проприорецепторов повышается также при умеренных раздражениях симпатических волокон и выделении небольших доз адреналина.

Сухожильные рецепторы Гольджи находятся в месте соединения мышечных волокон с сухожилием. Сухожильные рецепторы (окончания нервных волокон) оплетают тонкие сухожильные волокна, окруженные капсулой. В результате последовательного крепления сухожильных рецепторов к мышечным волокнам (а в ряде случаев – к мышечным веретенам) растяжение сухожильных механорецепторов происходит при напряжении мышц, т.е. они возбуждаются при сокращении мышцы. Таким образом, в отличие от мышечных веретен сухожильные рецепторы информируют нервные центры о силе, развиваемой мышцей (о степени напряжения мышц и скорости его развития). На спинальном уровне они через интернейроны вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов антагониста.

Суставные рецепторы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Они представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни суставные рецепторы посылают информацию о величине суставного угла, т.е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецепторы возбуждаются только в момент движения в суставе, т.е. посылают информацию о скорости движения. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.

Сигналы, идущие от рецепторов мышечных веретен, сухожильных органов, суставных сумок и тактильных рецепторов кожи, называют кинестетическими, т.е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положениях или поддержании веса. Сигналы же от других проприорецепторов, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движений и поз.

3. Сенсорные системы кожи, внутренних органов, вкуса и обоняния

В коже и внутренних органах имеются разнообразные рецепторы, реагирующие на физические и химические раздражители.

Кожная рецепция

В коже представлена тактильная, температурная и болевая рецепция. На 1 см 2 кожи, в среднем, приходится 12 13 холодовых точек, 1 2 теп­ловых, 25 тактильных и около 100 болевых.

Тактильная сенсорная система предназначена для анализа давле­ния и прикосновения. Ее рецепторы представляют собой свободные нервные окончания и сложные образования (тельца Мейснера, тельца Пачини), в которых нервные окончания заключены в специальную капсулу. Они находятся в верхних и нижних слоях кожи, в кожных сосудах, в осно­ваниях волос. Особенно их много на пальцах рук и ног, ладонях, подош­вах, губах. Это механорецепторы, реагирующие на растяжение, давление и вибрацию. Наиболее чувствительным рецептором является тельце Пачини, которое вызывает ощущение прикосновения при смещении капсулы лишь на 0,0001 мм. Чем больше размеры тельца Пачини, тем более тол­стые и быстропроводящие афферентные нервы отходят от него. Они проводят кратковременные залпы (длительностью 0,005 с), информи­рующие о начале и окончании действия механического раздражителя.

Путь тактильной информации следующий : рецептор - 1-й ней­рон в спинномозговых узлах - 2-й нейрон в спинном или продолговатом мозге - 3-й нейрон в промежуточном мозге (в таламусе) - 4-й нейрон в задней центральной извилине коры больших полушарий (в первичной соматосенсорной зоне).

Температурная рецепция осуществляется холодовыми рецептора­ми (колбы Краузе) и тепловыми (тельца Руффини, Гольджи-Маццони). При температуре кожи 31 - 37 °С эти рецепторы почти неактивны. Ниже этой границы холодовые рецепторы активизируются пропорционально па­дению температуры, затем их активность падает и совсем прекращается при +12 °С. При температуре выше 37 °С активизируются тепловые рецеп­торы, достигая максимальной активности при +43 °С, затем резко прекра­щают ответы.

Болевая рецепция , как считает большинство специалистов, не име­ет специальных воспринимающих образований. Болевые раздражения вос­принимаются свободными нервными окончаниями, а также возникают при сильных температурных и механических раздражениях в соответствующих термо- и механорецепторах.

Температурные и болевые раздражения передаются в спинной мозг, оттуда в промежуточный мозг и в соматосенсорную область коры.

3.2. Висцероцептивная (интерорецептивная) сенсорная система

Во внутренних органах имеется множество рецепторов, воспринимающих давление, – барорецепторы сосудов, кишечного тракта и др., изменения химизма внутренней среды, – хеморецепторы, ее температуры, – терморецепторы, осмотического давления, болевые раздражения. С их помощью безусловнорефлекторным путем регулируется постоянство различ-ных констант внутренней среды (поддержание гомеостаза), ЦНС информируется об изменениях во внутренних органах.

Информация от интерорецепторов через блуждающий, чревный и тазовый нервы поступает в промежуточный мозг (и к таламусу, и к гипоталамусу), а также к подкорковым ядрам (хвостатому телу), мозжечку и далее – в лобные и другие области коры головного мозга. Деятельность этой системы практически не осознается, она мало локализована, однако при сильных раздражениях она хорошо ощущается. Она участвует в формировании сложных ощущений – жажды, голода и др.

3.3. Обонятельная и вкусовая сенсорные системы

Обонятельная и вкусовая сенсорные системы относятся к древнейшим системам. Они предназначены для восприятия и анализа химических раздражений, поступающих из внешней среды.

X еморецепторы обоняния находятся в обонятельном эпителии верхних носовых ходов. Это – волосковые биполярные клетки, передающие информацию через решетчатую кость черепа к клеткам обонятельной луковицы мозга и далее через обонятельный тракт к обонятельным зонам коры (крючок морского коня, извилина гиппокампа и другие). Различные рецепторы избирательно реагируют на разные молекулы пахучих веществ, возбуждаясь лишь теми молекулами, которые являются зеркальной копией поверхности рецептора. Они воспринимают эфирный, камфарный, мятный, мускусный и другие запахи, причем к некоторым веществам чувствительность необычайно высока.

Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом убывает. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступают через волокна лицевого и языко-глоточного нервов в таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горький (задняя часть языка), кислый (края языка), сладкий (передняя часть языка) и соленый (передняя часть и края языка). Между вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, т.к. вкусовые ощущения могут изменяться при заболевании, беременности и т.д. В формировании вкусовых ощущений участвуют обоняние, тактильная, болевая и температурная чувствительность. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пищи, формированием чувства голода, сытости.

4. Переработка, взаимодействие и значение сенсорной информации

Сенсорная информация передается от рецепторов в высшие отделы мозга по двум основным путям нервной системы – специфическим и неспецифическим. Специфические проводящие пути – это классические афферентные пути зрительной, слуховой, двигательной и других сенсорных систем, которые составляют один из трех основных функциональных блоков мозга – блок приема, переработки и хранения информации (А. Р. Лурия, 1962, 1973). В обработке этой информации участвует и неспецифическая система мозга, не имеющая прямых связей с периферическими рецепторами, но получающая импульсы по коллатералям от всех восходящих специфических систем и обеспечивающая их широкое взаимодействие.

4.1. Обработка сенсорной информации в проводниковых отделах

Анализ получаемых раздражений происходит во всех отделах сенсорных систем. Наиболее простая форма анализа осуществляется уже на уровне рецепторов: из всех падающих на организм воздействий они выделяют (выбирают) раздражители одного вида (свет, звук и пр.). При этом в одной сенсорной системе возможно уже более детальное выделение характеристик сигналов (цветоразличение фоторецепторами колбочек и др. ).

Дальнейшая обработка афферентной информации в проводниковом отделе заключается, с одной стороны, в продолжающемся анализе свойств раздражителя, а с другой – в процессах их синтеза, в обобщении поступившей информации. По мере передачи афферентных импульсов на более высокие уровни сенсорных систем возрастает сложность обработки информации: например, в подкорковых зрительных центрах среднего мозга есть нейроны, которые реагируют на различную степень освещенности и обнаруживают движение; в подкорковых слуховых центрах – нейроны, извлекающие информацию о высоте тона и локализации звука, что лежит в основе ориентировочного рефлекса на неожиданные раздражители, т.е. эти нейроны реагируют на афферентные сигналы более сложно, чем простые проводники.

Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие между различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходиться (конвергировать) импульсы различного происхождения (от 30 тысяч нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.

При поступлении в более высокие уровни ЦНС происходит либо сжатие, либо расширение информации, приходящей от одного рецептора, что связано с неодинаковым числом элементов в соседних слоях. Примером может служить зрительная сенсорная система, где слой фоторецепторов в каждой из двух сетчаток человека имеет около 130 млн элементов, а в слое выходных – ганглиозных клеток сетчатки – всего 1 млн 250 тысяч нейронов. Одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т.е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде. Это пример сужения (сжатия) информации.

С другой стороны, сигналы одного рецептора связаны с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры. На более высоких уровнях зрительной сенсорной системы происходит расширение информации: число нейронов в первичной зрительной зоне коры в тысячи раз больше, чем в подкорковом зрительном центре или на выходе из сетчатки. В слуховой и ряде других сенсорных систем представлена только расширяющаяся «воронка» – по направлению от рецепторов к коре. Физиологический смысл расширяющихся «воронок» – обеспечение более дробного и сложного анализа сигналов.

Большое количество параллельных каналов (в зрительном нерве 900 000, а слуховом – 30 000 волокон) обеспечивает передачу без искажений специфической информации от рецепторов к коре.

Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе важную роль играет также неспецифический отдел нервной системы (лимбическая система, ретикулярная формация). Активируя или затормаживая многие центральные нейроны, он способствует отбору наиболее значимой для организма информации. В отличие от обширных влияний среднемозговой части ретикулярной формации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.

4.2. Обработка информации на корковом уровне

В коре больших полушарий сложность обработки информации возрастает от первичных полей к вторичным и третичным ее полям.

Первичные поля коры осуществляют анализ раздражений определенного вида, поступающих от связанных с ними специфических рецепторов. Это так называемые ядерные зоны анализаторов (по И. П. Павлову) – зрительные, слуховые и др. Их деятельность лежит в основе возникновения ощущений.

Лежащие вокруг них вторичные поля (периферия анализаторов) получают от первичных полей результаты обработки информации и преобразуют их в более сложные формы. Во вторичных полях происходит осмысливание полученной информации, ее узнавание, обеспечиваются процессы восприятия раздражений данного вида. От вторичных полей отдельных сенсорных систем информация поступает в задние третичные поля – ассоциативные нижнетеменные зоны, где происходит интеграция сигналов различной модальности, позволяющая создать цельный образ внешнего мира со всеми его запахами, звуками, красками и т.п. Здесь на основе афферентных сообщений от разных частей правой и левой половины тела формируются сложные представления человека о схеме пространства и схеме тела, которые обеспечивают пространственную ориентацию движений и точную адресацию моторных команд к различным скелетным мышцам. Эти зоны также имеют особое значение в хранении полученной информации.

На основе анализа и синтеза информации, обработанной в заднем третичном поле коры, в ее передних третичных полях (передней лобной области) формируются цели, задачи и программы поведения человека.

Важной особенностью корковой организации сенсорных систем является экранное или соматотопическое (лат. соматикус – телесный, топикус – местный) представительство функций. Чувствительные корковые центры первичных полей коры образуют как бы экран, отражающий расположение рецепторов на периферии, т.е. здесь имеются проекции «точка в точку». Так, в задней центральной извилине (в соматосенсорной зоне) нейроны тактильной, температурной и кожной чувствительности представлены в том же порядке, что и рецепторы на поверхности тела, напоминая копию человечка (гомункулюса); в зрительной коре – как бы экран рецепторов сетчатки; в слуховой коре – в определенном порядке нейроны, реагирующие на определенную высоту звуков. Тот же принцип пространственного представительства информации наблюдается в переключательных ядрах таламуса, в коре мозжечка, что значительно облегчает взаимодействие различных отделов ЦНС.

Область коркового сенсорного представительства по своим размерам отражает функциональную значимость той или иной части афферентной информации. Так, в связи с особой значимостью анализа информации от кинестетических рецепторов пальцев руки и от речеобразующего аппарата у человека территория их коркового представительства значительно превосходит сенсорное представительство других участков тела. Аналогично этому, на единицу площади центральной ямки в сетчатке глаза приходится почти в 500 раз большая зона зрительной коры, чем на такую же единицу площади периферии сетчатки.

Высшие отделы ЦНС обеспечивают активный поиск сенсорной информации. Это наглядно проявляется в деятельности зрительной сенсорной системы. Специальные исследования движений глаз показали, что взор фиксирует не все точки пространства, а лишь наиболее информативные признаки, особо важные для решения какой- либо задачи в данный момент. Поисковая функция глаз является частью активного поведения человека во внешней среде, его сознательной деятельностью. Она управляется высшими анализирующими и интегрирующими областями коры – лобными долями, под контролем которых происходит активное восприятие внешнего мира.

Кора больших полушарий обеспечивает наиболее широкое взаимодействие различных сенсорных систем и их участие в организации двигательных действий человека, в т.ч. в процессе его спортивной деятельности.

4.3. Значение деятельности сенсорных систем в спорте

Эффективность выполнения спортивных упражнений зависит от процессов восприятия и переработки сенсорной информации.

Четкое восприятие пространства и пространственная ориентация движений обеспечиваются функционированием зрительной, слуховой, вестибулярной, кинестетической рецепции. Оценка временных интервалов и управление временными параметрами движений базируется на проприоцептивных и слуховых ощущениях. Вестибулярные раздражения при поворотах, вращениях, наклонах и т.п. заметно влияют на координацию движений и проявление физических качеств, особенно, при низкой устойчивости вестибулярного аппарата. Экспериментальное выключение отдельных сенсорных афферентаций у спортсменов (выполнение движений в специальном ошейнике, исключающем активацию шейных проприорецепторов; использование очков, закрывающих центральное или периферическое поле зрения) приводило к резкому снижению оценок за упражнение или к полной невозможности его исполнения. В противоположность этому, сообщение спортсмену дополнительной информации (особенно срочной – в процессе движения) помогало быстрому совершенствованию технических действий. На основе взаимодействия сенсорных систем у спортсменов вырабатываются комплексные представления, сопровождающие его деятельность в избранном виде спорта – «чувство» льда, снега, воды и т.п. При этом в каждом виде спорта имеются наиболее важные – ведущие сенсорные системы, от активности которых в наибольшей мере зависит успешность выступлений спортсмена.

1. Кем было создано учение об анализаторах?

2. Что называют анализатором?

3. Назовите общие принципы строения сенсорных систем.

4. В чем заключается принцип многослойности; многоканальности сенсорных систем?

5. На какие отделы делятся сенсорные системы?

6. Что такое рецепторы?


Материалы для самостоятельной подготовки Вопросы к коллоквиуму и для самоконтроля

1 Кем было создано учение об анализаторах?

2 Что называют анализатором?

3 Назовите общие принципы строения сенсорных систем.

4 В чем заключается принцип многослойности; многоканальности сенсорных систем?

5 На какие отделы делятся сенсорные системы?

6 Что такое рецепторы?

7. Назовите основные функции сенсорных систем.

Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются текториальной мембраны и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва.

Слуховой анализатор человека воспринимает звуковые волны с частотой их колебаний от 20 до 20 тыс. в секунду. Высота тона определяется частотой колебаний: чем она больше, тем выше по тону воспринимаемый звук. Анализ звуков но частоте осуществляется периферическим отделом слухового анализатора. Под влиянием звуковых колебаний прогибается мембрана окна преддверия, смещая при этом какой-то объем перилимфы.

При малой частоте колебаний частицы перилимфы перемещаются по вестибулярной лестнице вдоль спиральной мембраны по направлению к геликотреме и через нее по барабанной лестнице к мембране круглого окна, которая прогибается иа такую же величину, что и мембрана овального окна. Если же действует большая частота колебаний, возникает быстрое смещение мембраны овального окна и повышение давления в вестибулярной лестнице. В результате спиральная мембрана прогибается в сторону барабанной лестницы и реагирует участок мембраны вблизи окна преддверия. При повышении давления в барабанной лестнице изгибается мембрана круглого окна, основная мембрана благодаря своей упругости возвращается в исходное положение. В это время частицы перилимфы смещают следующий, более инерционный участок мембраны, и волна пробегает по всей мембране. Колебания окна преддверия вызывают бегущую волну, амплитуда которой возрастает и максимум ее соответствует какому-то определенному участку мембраны. По достижении максимума амплитуды волна затухает. Чем выше высота звуковых колебаний, тем ближе к окну преддверия находится максимум амплитуды колебаний спиральной мембраны. Чем меньше частота, тем ближе к геликотреме отмечаются наибольшие ее колебания.

Установлено, что при действии звуковых волн с частотой колебаний до 1000 в секунду в колебание приходит весь столб перилимфы вестибулярной лестницы и вся спиральная мембрана. При этом их колебания происходят в точном соответствии с частотой колебания звуковых волн и вызывают потенциалы действия такой же частоты в слуховом нерве. При частоте звуковых колебаний свыше 1000 колеблется не вся основная мембрана, а какой-то ее участок, начиная от окна преддверия. Чем выше частота колебаний, тем меньший по длине участок мембраны, начиная от окна преддверия, приходит в колебание и тем меньшее число волосковых клеток приходит в состояние возбуждения. В слуховом нерве в этом случае регистрируются потенциалы действия, частота которых меньше частоты звуковых волн, действующих на ухо, причем при высокочастотных звуковых колебаниях импульсы возникают в меньшем числе волокон, чем при низкочастотных колебаниях, что связано с возбуждением лишь части волосковых клеток.

При действии звуковых колебаний в кортиевом органе происходит пространственное кодирование звука. Ощущение той или иной высоты звука зависит от длины колеблющегося участка основной мембраны, а следовательно, от числа расположенных на ней волосковых клеток и от места их расположения. Чем меньше колеблющихся клеток и чем ближе они расположены к окну преддверия, тем более высоким воспринимается звук. Колеблющиеся волосковые клетки вызывают возбуждение в строго определенных волокнах слухового нерва, а значит, и в определенных нервных клетках головного мозга.

Сила звука определяется амплитудой звуковой волны. Ощущение интенсивности звука связано с различным соотношением числа возбужденных внутренних и внешних волосковых клеток. Поскольку внутренние клетки менее возбудимы, чем внешние, возбуждение большого их числа возникает при действии сильных звуков.

Возрастные особенности слухового анализатора

Формирование улитки происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается миелинизация волокон улиткового нерва в нижнем (основном) завитке улитки. Миелинизация в среднем и верхнем завитках улитки начинается значительно позднее.

Дифференцировка отделов слухового анализатора, которые расположены в головном мозге, проявляется в формировании клеточных слоев, в увеличении пространства между клетками, в росте нейронов и изменении их структуры: в увеличении числа отростков, шипиков и синапсов.

Подкорковые структуры, относящиеся к слуховому анализатору, созревают раньше, чем его корковый отдел. Их качественное развитие заканчивается на 3-м месяце после рождения. Корковые ноля слухового анализатора приближаются к взрослому состоянию к окончанию дошкольного возраста.

Слуховой анализатор начинает функционировать сразу же после рождения. Уже у новорожденных возможно осуществление элементарного анализа звуков. Первые реакции на звук носят характер ориентировочных рефлексов, осуществляемых на уровне подкорковых образований. Они отмечаются даже у недоношенных детей и проявляются в закрывании глаз, открывании рта, вздрагивании, уменьшении частоты дыхания, пульса, в различных мимических движениях. Звуки, одинаковые по интенсивности, но разные по тембру и высоте, вызывают разные реакции, что свидетельствует о способности их различения новорожденным ребенком.

Ориентировочная реакция на звук появляется у младенцев на первом месяце жизни и с 2–3 месяцев принимает характер доминанты. Условные пищевые и оборонительные рефлексы на звуковые раздражения вырабатываются с 3-5 недель жизни ребенка, но их упрочнение возможно лишь с 2 месяцев. Дифференцирование разнородных звуков отчетливо совершенствуется с 2–3 месяцев. В 6–7 месяцев дети дифференцируют тоны, отличающиеся от исходного на 1–2 и даже на 3–4,5 музыкального тона.

Функциональное развитие слухового анализатора продолжается до 6–7 лет, что проявляется в образовании тонких дифференцировок на речевые раздражители и изменении порога слышимости. Порог слышимости уменьшается, острота слуха увеличивается к 14–19 годам, затем они постепенно изменяются в обратном направлении. Изменяется также чувствительность слухового анализатора к разным частотам. С рождения он "настроен" на восприятие звуков человеческого голоса, причем в первые месяцы – высокого, негромкого, с особыми ласкательными интонациями, получившего название "baby talk", именно таким голосом большинство мам инстинктивно разговаривают со своими младенцами. С 9-месячного возраста ребенок может различать голоса близких ему людей, частоты различных шумов и звуков повседневной жизни, просодические средства языка (высота тона, долгота, краткость, различная громкость, ритм и ударение), прислушивается, если с ним заговаривают. Дальнейшее повышение чувствительности к частотным характеристикам звуков происходит одновременно с дифференциацией фонематического и музыкального слуха, становится максимальной к 5–7 годам и в значительной степени зависит от тренировки. Во взрослом и пожилом возрасте частотные характеристики слухового восприятия также изменяются: до 40 лет наименьший порог слышимости падает на частоту 3000 Гц, в 40–49 лет – 2000 Гц, после 50 лет – 1000 Гц, с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.

Психоакустика - область науки, которая изучает слуховые ощущения человека при воздействии звука на уши.

Люди, обладающие абсолютным (аналитическим) музыкальным слухом, с высокой точностью определяют высоту, громкость и тембр звука, способны запоминать звучание инструментов и распознавать их через некоторое время. Они могут правильно проанализировать прослушанное, правильно выделить отдельные инструменты.

Люди, не обладающие абсолютным слухом, могут определить ритм, тембр, тональность, но правильно произвести анализ прослушанного материала для них затруднительно.

При прослушивании высококачественной аудиоаппаратуры, как правило, мнения экспертов расходятся. Одни предпочитают высокую прозрачность и верность передачи каждого обертона, их раздражает отсутствие детализованности звучания. Другие предпочитают звучание размытого, нечеткого характера, быстро устают от изобилия подробностей в музыкальном образе. Кто-то заостряет внимание на гармонии в звучании, кто-то на спектральном балансе, а кто-то - на динамическом диапазоне. Оказывается, все зависит от типохарактера индивида Типохарактеры людей подразделяются на следующие дихотомии (парные классы): сенсорную и интуитивную, думающую и чувствующую, экстравертную и интровертную, решающую и воспринимающую .

Люди с сенсорной доминантой обладают четкой дикцией, великолепно воспринимают все нюансы речевого или музыкального образа. Для них чрезвычайно важна прозрачность звучания, когда четко выделяются все звучащие инструменты

Слушатели с интуитивной доминантой предпочитают размытый музыкальный образ, придают исключительно важное значение сбалансированности звучания всех музыкальных инструментов.

Слушатели с думающей доминантой предпочитают музыкальные произведения с высоким динамическим диапазоном, с четко обозначенной мажорной и минорной доминантой, с выраженным смыслом и структурой произведения

Люди с чувствующей доминантой придают большое значение гармоничности в музыкальных произведениях, предпочитают произведения с небольшими отклонениями мажорности и минорности от нейтрального значения, т.е. «музыку для души».



Слушатель с экстравертной доминантой успешно выделяет сигнал из шума, предпочитает слушать музыку с высоким уровнем громкости, мажорность или минорность музыкального произведения определяет по частотному положению музыкального образа в данный момент.

Люди с интровертной доминантой значительное внимание уделяют внутренней структуре музыкального образа, мажорность-минорность оценивают, в том числе, и по смещению частоты одной из гармоник в возникающих резонансах, посторонние шумы затрудняют восприятие аудиоинформации.

Люди с решающей доминантой предпочитают в музыке закономерность, наличие внутренней периодичности.

Слушатели с воспринимающей доминантой предпочитают в музыке импровизацию.

Каждый по себе знает, что одна и та же музыка на одной и той же аппаратуре и в одном и том же помещении не всегда воспринимается одинаково. Вероятно, в зависимости от психоэмоционального состояния наши чувства то притупляются, то обостряются.

С другой стороны, излишняя детализованность и натуральность звучания может раздражать усталого и обремененного заботами слушателя с сенсорной доминантой, что в таком состоянии он предпочтет музыку размытую и мягкую, грубо говоря, предпочтет слушать живые инструменты в шапке-ушанке.

В какой-то степени на качество звука оказывает влияние «качество» напряжения сети, которое в свою очередь зависит как от дня недели, так и от времени суток (в часы пиковой нагрузки напряжение сети наиболее «загрязнено»). От времени суток зависит и уровень шума в помещении, а значит и реальный динамический диапазон.

О влиянии окружающего шума хорошо запомнился случай 20-летней давности. Поздно вечером после деревенской свадьбы молодежь осталась помочь убрать со столов и перемыть посуду. Музыка была организована во дворе: электробаян с двухканальным усилителем и двумя колонками, четырехканальный усилитель мощности по схеме Шушурина, на вход которого был подключен электробаян, а на выходы - две 3-полосные и две 2-полосные акустические системы. Магнитофон с записями, выполненными на 19 скорости со встречно-параллельным подмагничиванием. Около 2-х часов ночи, когда все освободились, молодежь собралась во дворе и попросила включить что-нибудь для души. Каково же было удивление музыкантов и присутствующих меломанов, когда зазвучало попурри на темы Битлс в исполнении группы STARS on 45. Для слуха, адаптированного к восприятию музыки в атмосфере повышенной зашумленности, звучание в ночной тишине стало удивительно чистым и нюансированным.

Восприятие по частоте

Человеческое ухо воспринимает колебательный процесс как звук только в том случае, если частота его колебаний находится в пределах от 16...20 Гц до 16...20 кГц. При частоте ниже 20 Гц колебания называют инфразвуковыми, выше 20 кГц - ультразвуковыми. Звуки с частотой ниже 40 Гц в музыке встречаются редко, а в разговорной речи и вовсе отсутствуют. Восприятие высоких звуковых частот сильно зависит как от индивидуальных особенностей органов слуха, так и от возраста слушателя. Так, например, в возрасте до 18 лет звуки частотой 14 кГц слышат около 100%, в то время как в возрасте 50...60 лет - только 20% слушателей. Звуки частотой 18 кГц к 18 годам слышит около 60%, а к 40...50 годам - всего 10% слушателей. Но это вовсе не означает, что для людей пожилого возраста снижаются требования к качеству тракта звуковоспроизведения. Экспериментально установлено, что люди, едва воспринимающие сигналы частотой 12 кГц, очень легко распознают недостаток верхних частот в фонограмме.

Разрешающая способность слуха к изменению частоты около 0,3%. Например два тона 1000 и 1003 Гц, следующих один за другим, можно различить без приборов. А по биениям частот двух тонов человек может обнаружить разность частот до десятых долей герца. В то же время трудно различить на слух отклонение скорости воспроизведения музыкальной фонограммы в пределах ±2%.

Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Исходя из этого, все частотные характеристики устройств передачи звука строят в логарифмическом масштабе. Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренированности его слуха, а также от интенсивности звука. При больших уровнях громкости звуки большей интенсивности кажутся ниже, чем слабые.

При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается и тем больше, чем выше громкость звука, что связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией. По истечении определенного времени чувствительность восстанавливается. Систематическое и длительное прослушивание музыки с высоким уровнем громкости вызывает необратимые изменения в органах слуха, особенно страдает молодежь, пользующаяся наушниками (головными телефонами).

Важной характеристикой звука является тембр. Способность слуха различать его оттенки позволяет различать многообразие музыкальных инструментов и голосов. Благодаря тембральной окраске их звучание становится многокрасочным и легко узнаваемым. Условием правильной передачи тембра является неискаженная передача спектра сигнала - совокупности синусоидальных составляющих сложного сигнала (обертонов). Обертоны кратны частоте основного тона и меньше его по амплитуде. От состава обертонов и их интенсивности зависит тембр звука.

Тембр звука живых инструментов в значительной степени зависит от интенсивности звукоизвлечения. Например, одна и та же нота, сыгранная на фортепьяно легким нажатием пальца, и резким, имеет разные атаки и спектры сигнала. Даже не тренированный человек легко улавливает эмоциональное различие двух таких звуков по их атаке, даже если они переданы слушателю с помощью микрофона и уравновешены по громкости. Атака звука - это начальная стадия, специфический переходной процесс, в течение которого устанавливаются стабильные характеристики: громкость, тембр, высота звука. Длительность атаки звука разных инструментов колеблется в пределах 0...60 мс. Например, у ударных инструментов она находится в пределах 0...20 мс, у фагота - 20...60 мс. Характеристики атаки инструмента сильно зависят от манеры и техники игры музыканта. Именно эти особенности инструментов позволяют передать эмоциональное содержание музыкального произведения.

Тембр звука источника сигнала, находящегося на расстоянии от слушателя менее 3 м, воспринимается более «тяжелым». Удаление источника сигнала от 3 до 10 м сопровождается пропорциональным уменьшением громкости, при этом тембр становится более ярким. С дальнейшим удалением источника сигнала потери энергии в воздухе растут пропорционально квадрату частоты и имеют сложную зависимость от относительной влажности воздуха. Потери энергии ВЧ-составляющих максимальны при относительной влажности в пределах от 8 до 30...40% и минимальны при 80% (рис. 1.1) . Увеличение потерь обертонов приводит к снижению тембральной яркости.

Восприятие по амплитуде

Кривые равной громкости от порога слышимости до порога болевого ощущения для бинаурального и моноурального слушания приведены на рис. 1.2.а,б, соответственно . Восприятие по амплитуде зависит от частоты и имеет значительный разброс, связанный с возрастными изменениями.

Чувствительность слуха к интенсивности звука носит дискретный характер. Порог ощущения изменения интенсивности звука зависит как от частоты, так и от громкости звука (на высоких и средних уровнях составляет 0,2...0,6 дБ, на низких уровнях доходит до нескольких децибел) и в среднем меньше 1 дБ.

Эффект Хааса (Haas)

Слуховому аппарату, как и любой другой колебательной системе, свойственна инерционность. Благодаря этому свойству короткие звуки длительностью до 20 мс воспринимаются более тихими, чем звуки длительностью более 150 мс. Одно из проявлений инерционности -

неспособность человека выявлять искажения в импульсах длительностью менее 20 мс. В случае прихода к ушам 2-х одинаковых сигналов, с временным интервалом между ними 5...40 мс, слух воспринимает их как один сигнал, при интервале более 40...50 мс - раздельно.

Эффект маскировки

Ночью, в условиях тишины, слышны писк комара, тиканье часов и другие тихие звуки, а в условиях шума трудно разобрать громкую речь собеседника. В реальных условиях акустический сигнал не существует в абсолютной тишине. Посторонние шумы, неизбежно присутствующие в месте прослушивания, маскируют в определенной мере основной сигнал и затрудняют его восприятие. Повышение порога слышимости одного тона (или сигнала) при одновременном воздействии другого тона (шума или сигнала) называют маскировкой.

Экспериментально установлено, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими, иными словами, низкочастотные тоны сильнее маскируют высокочастотные, чем наоборот. Например, при одновременном воспроизведении звуков 440 и 1200 Гц с одинаковой интенсивностью, мы будем слышать только тон частотой 440 Гц и только выключив его, услышим тон частотой 1200 Гц. Степень маскировки зависит от соотношения частот и носит сложный характер, связанный с кривыми равной громкости (рис. 1.3.α и 1.3.6) .

Чем больше соотношение частот, тем меньше эффект маскировки. Это в значительной степени объясняет феномен «транзисторного» звучания. Спектр нелинейных искажений транзисторных усилителей простирается вплоть до 11 гармоники, в то время как спектр ламповых усилителей ограничивается 3...5 гармоникой. Кривые маскировки узкополосным шумом для тонов разных частот и уровней их интенсивности имеют разный характер. Четкое восприятие звука возможно в том случае, если его интенсивность превышает определенный порог слышимости. На частотах 500 Гц и ниже превышение интенсивности сигнала должно быть около 20 дБ, на частоте 5 кГц - около 30 дБ, а

на частоте 10 кГц - 35 дБ. Эту особенность слухового восприятия учитывают при записи на носители звука. Так, если отношение сигнал/шум аналоговой грампластинки около 60...65 дБ, то динамический диапазон записанной программы может быть не более 45...48 дБ.

Эффект маскировки оказывает влияние на субъективно воспринимаемую громкость звука. Если составляющие сложного звука расположены по частоте близко друг к другу и наблюдается их взаимная маскировка, то громкость такого сложного звука будет меньше громкостей его составляющих.

Если несколько тонов расположены по частоте настолько далеко, что их взаимной маскировкой можно пренебречь, то их суммарная, громкость будет равна сумме громкостей каждой из составляющих.

Достижение «прозрачности» звучания всех инструментов оркестра или эстрадного ансамбля является сложной задачей, которая решается звукорежиссером - умышленным выделением наиболее важных в данном месте произведения инструментов и другими специальными приемами.

Бинауральный эффект

Способность человека определять направление источника звука (благодаря наличию двух ушей) называется бинауральным эффектом . К уху, расположенному ближе к источнику звука, звук приходит раньше, чем ко второму уху, а значит, различается по фазе и амплитуде. При слушании реального источника сигнала бинауральные сигналы (т.е. сигналы, приходящие к правому и левому уху) статистически связаны между собой (коррелированны). Точность локализации источника звука зависит как от частоты, так и от его местонахождения (спереди или сзади слушателя). Дополнительную информацию о расположении источника звука (спереди, сзади, сверху) орган слуха получает, анализируя особенности спектра бинауральных сигналов.

До 150...300 Гц человеческий слух обладает очень малой направленностью. На частотах 300...2000 Гц, для которых длина полуволны сигнала соизмерима с «межушным» расстоянием, равным 20...25 см, существенны фазовые различия. Начиная с частоты 2 кГц направленность слуха резко убывает. На высших частотах большее значение приобретает разность амплитуд сигналов. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше.

При асимметричном расположении слушателя относительно громкоговорителей возникают дополнительные интенсивностные и временные разносы, которые приводят к пространственным искажениям. Причем, чем дальше КИЗ (кажущийся источник звука) от центра базы (ΔL > 7 дБ или Δτ > 0,8 мс), тем меньше они подвержены искажениям. При ΔL > 20 дБ, Δτ > 3...5 мс КИЗ превращаются в действительные (громкоговорители) и не подвержены пространственным искажениям.

Экспериментально установлено, что пространственные искажения отсутствуют (незаметны), если полоса частот каждого канала сверху ограничена частотой не менее 10 кГц, а высокочастотная (выше 10 кГц) и низкочастотная (ниже 300 Гц) часть спектра этих сигналов воспроизводится монофонически.

Погрешность оценки азимута источника звука в горизонтальной плоскости спереди составляет 3...4°, сзади и в вертикальной плоскости - примерно 10... 15°, что объясняется экранирующим действием ушных раковин.

Человек воспринимает звук посредством уха (рис.).

Снаружи расположена раковина внешнего уха , переходящая в слуховой канал диаметром D 1 = 5 мм и длиной 3 см .

Далее расположена барабанная перепонка, которая вибрирует под действием звуковой волны (резонирует). Перепонка присоединена к костям среднего уха , передающим вибрацию другой перепонке и далее во внутреннее ухо.

Внутреннее ухо имеет вид закрученной трубки ("улитки") с жидкостью. Диаметр этой трубки D 2 = 0,2 мм длина 3 – 4 см длинной.

Поскольку колебания воздуха в звуковой волне слабые, чтобы непосредственно возбудить жидкость в улитке, то система среднего и внутренне уха совместно с их перепонками играют роль гидравлического усилителя. Площадь барабанной перепонки внутреннего уха меньше площади перепонки среднего уха. Давление, оказываемое звуком на перепонки, обратно пропорционально площади:

.

Поэтому давление на внутреннее существенно ухо возрастает:

.

Во внутреннем ухе по всей его длине натянута ещё одна мембрана (продольная), жёсткая в начале уха и мягкая в конце. Каждый участок этой продольной мембраны может колебаться с собственной частотой. В жёстком участке возбуждаются колебания высокой частоты, а в мягком – низкой. Вдоль этой мембраны расположен преддверноулитковый нерв, который воспринимают колебания и передаёт их в мозг.

Самая низкая частота колебаний источника звука 16-20 Гц воспринимается ухом как низкий басовый звук. Область наибольшей чувствительности слуха захватывает часть среднечастотного и часть высокочастотного поддиапазонов и соответствует интервалу частот от 500 Гц до 4-5 кГц . Человеческий голос и звуки, издаваемые большинством важных нам процессов в природе, имеют частоту в этом же интервале. При этом звуки частотой от 2 кГц до 5 кГц улавливаются ухом как звон или свист. Иначе говоря, самая важная информация передаётся на звуковых частотах приблизительно вплоть до 4-5 кГц .

Подсознательно человек разделяет звуки на "положительные", "отрицательные" и "нейтральные".

К отрицательным относятся звуки, которые прежде были не знакомы, странные и необъяснимые. Они вызывают страх и беспокойство. К ним также относятся низкочастотные звуки, например, низкий барабанный стук или вой волка, т. к. возбуждают страх. Кроме того, страх и ужас возбуждают неслышимые низкочастотные звук (инфразвук). Примеры :

    В 30-е годы 20 века в одном из лондонских театров в качестве сценического эффекта применили громадную органную трубу. От инфразвука этой трубы всё здание задрожало, а в людях поселился ужас.

    Сотрудники национальной лаборатории физики в Англии провели эксперимент, добавив к звучанию обычных акустических инструментов классической музыки сверхнизкие (инфразвуковые) частоты. Слушатели почувствовали упадок настроения и испытали чувство страха.

    На кафедре акустики МГУ проводились исследования влияние рока и поп музыки не человеческий организм. Оказалось, что частота основного ритма композиции «Дип Пёпл» вызывает неконтролируемое возбуждение, потерю контроля над собой, агрессивность к окружающим или негативные эмоции к себе. Композиция «The Beatles», на первый взгляд благозвучная, оказалась вредной и даже опасной, т. к. имеет основной ритм около 6,4 Гц. Эта частота резонирует с частотами грудной клетки, брюшной полости и близка к собственной частоте головного мозга (7 Гц.). Поэтому при прослушивании этой композиции ткани живота и груди начинают болеть и постепенно разрушаться.

    Инфразвук вызывает в организме человека колебания различных систем, в частности, сердечно-сосудистой. Это оказывает неблагоприятное воздействие и может привести, например, к гипертонической болезни. Колебания на частоте 12 Гц могут, если их интенсивность превысит критический порог, вызвать гибель высших организмов, в т. ч. людей. Эта и другие инфразвуковые частоты присутствуют в производственных шумах, шумах автострад и др. источников.

Замечание : У животных резонанс музыкальных частот и собственных может привести к распаду функции мозга. При звучании "металлического рока" коровы перестают давать молоко, а вот свиньи, наоборот, обожают металлический рок.

Положительными являются звуки ручья, прилива моря или пения птиц; они вызывают успокоение.

Кроме того, и рок не всегда плох. Например, музыка типа «кантри», исполняемая на банджо, помогает выздоравливать, хотя плохо влияет на здоровье в самом начальном этапе заболевания.

К положительным звукам относятся классические мелодии. Например, американские учёные помещали грудных недоношенных младенцев в боксы для прослушивания музыки Баха, Моцарта, и дети быстро поправлялись, набирали вес.

Благоприятно влияет на здоровье человека колокольный звон.

Любой эффект звука усиливается в полумраке и темноте, поскольку уменьшается доля информации, поступающей с помощь зрения

        Поглощение звука в воздухе и ограждающими поверхностями

Поглощение звука в воздухе

В каждый момент времени в любой точке помещения интенсивность звука равна сумме интенсивности прямого звука, непосредственно исходящего от источника, и интенсивности звука, отражённого от ограждающих поверхностей помещения:

При распространении звука в атмосферном воздухе и в любой другой среде возникают потери интенсивности. Эти потери обусловлены поглощением звуковой энергии в воздухе и ограждающими поверхностями. Рассмотрим поглощение звука с помощью волновой теории .

Поглощение звука – это явление необратимого превращения энергии звуковой волны в другой вид энергии, прежде всего в энергию теплового движения частиц среды . Поглощение звука происходит и в воздухе, и при отражении звука от ограждающих поверхностей.

Поглощение звука в воздухе сопровождается уменьшением звукового давления. Пусть звук распространяется вдоль направления r от источника. Тогда в зависимости от расстояния r относительно источника звука амплитуда звукового давления убывает по экспоненциальному закону :

, (63)

где p 0 – начальное звуковое давление при r = 0

,

 – коэффициент поглощения звука. Формула (63) выражает закон поглощения звука .

Физический смысл коэффициента состоит в том, что коэффициент поглощения численно равен величине, обратной расстоянию, на котором звуковое давление уменьшается в e = 2,71 раз:

Единица измерения в СИ:

.

Поскольку сила звука (интенсивность) пропорциональная квадрату звукового давления, то этот же закон поглощения звука можно записать в виде:

, (63*)

где I 0 – сила звука (интенсивность) вблизи источника звука, т. е. при r = 0 :

.

Графики зависимости p зв (r ) и I (r ) представлены на рис. 16.

Из формулы (63*) следует, что для уровня силы звука справедливо уравнение:

.

. (64)

Следовательно, единица измерения коэффициента поглощения в СИ: непер на метр

,

кроме того, можно вычислять в белах на метр (Б/м ) или децибелах на метр (дБ/м ).

Замечание : Поглощение звука можно характеризовать коэффициентом потерь , который равен

, (65)

где – длина звуковой волны, произведение  логарифмический коэффициент затухания звука. Величину, равную обратной величине коэффициента потерь

,

называют добротностью .

Полной теории поглощении звука в воздухе (атмосфере) пока нет. Многочисленные эмпирические оценки дают разные значения коэффициента поглощения.

Первая (классическая) теория поглощения звука была создана Стоксом и основана на учёте влияния вязкости (внутреннего трения между слоями среды) и теплопроводности (выравнивания температуры между слоями среды). Упрощенная формула Стокса имеет вид:

, (66)

где вязкость воздуха, коэффициент Пуассона, 0 плотность воздуха при 0 0 С, скорость звука в воздухе. Для обычных условий эта формула примет вид:

. (66*)

Однако формула Стокса (63) или (63*) справедлива лишь для одноатомных газов, атомы которых имеют три поступательные степени свободы, т. е. при =1,67 .

Для газов из 2, 3 или многоатомных молекул значение существенно больше, т. к. звук возбуждает вращательные и колебательные степени свободы молекул. Для таких газов (в т. ч. для воздуха) более точной является формула

, (67)

где T н = 273,15 К – абсолютная температура таяния льда ("тройная точка"), p н = 1,013 . 10 5 Па – нормальное атмосферное давление, T и p – реальные (измеряемые) температура и атмосферное давление воздуха, =1,33 для двухатомных газов, =1,33 для трёх- и многоатомных газов.

Поглощение звука ограждающими поверхносятми

Поглощение звука ограждающими поверхностями происходит при отражении от них звука. При этом часть энергии звуковой волны отражается и обуславливает возникновения стоячих звуковых волн, а другая энергии преобразуется в энергию теплового движения частиц преграды. Эти процессы характеризуют коэффициентом отражения и коэффициентом поглощения ограждающей конструкции.

Коэффициент отражения звука от преграды – это безразмерная величина, равная отношению части энергии волны W отр , отражённой от преграды, ко всей энергии волны W пад , падающей на преграду

.

Поглощение звука преградой характеризуют коэффициентом поглощения безразмерной величиной, равной отношению части энергии волны W погл , поглощённой преградой (и перешедшей во внутреннюю энергию вещества преграды), ко всей энергии волны W пад , падающей на преграду

.

Средний коэффициент поглощения звука всеми ограждающими поверхностями равен

,

, (68*)

где i коэффициент поглощения звука материалом i -й преграды, S i – площадь i -й преграды, S – общая площадь преград, n - количество разных преград.

Из этого выражения можно сделать вывод, что средний коэффициент поглощения соответствует единому материалу, которым можно было бы покрыть все поверхности преград помещения с сохранением общего звукопоглощения (А ), равного

. (69)

Физический смысл общего звукопоглощения (А) : оно численно равно коэффициенту поглощения звука открытым проёмом площадью 1 м 2 .

.

Единица измерения звукопоглощения называется сэбин :

.