Среднее ухо. Анатомия, физиология. Участие в формировании воздушной проводимости. Костная проводимость звука: разбираемся, что это такое и насколько это безопасно Исследование костной и воздушной проводимости

Речь шла об исследовании слуха при прохождении звука через воздух. Кроме того, звук воспринимается при непосредственной передаче его через кости черепа.

Механизм проведения звука через кость полностью не изучен. Считают, что он может проводиться через костный лабиринт, костнотимпанальный (через костную стенку наружного и среднего уха) и тимпанальный (через окна в лабиринт).

Костная проводимость может определяться при помощи камертонов или аудиометра - электрических вибраторов (костных телефонов).

При исследовании слуха путем костного восприятия обычно пользуются камертонами низкой частоты (128 колебаний в секунду).

Звучащий камертон устанавливают на область сосцевидного отростка или срединной линии черепа.

Исследование костной проводимости каждого уха в отдельности затруднено, так как звуковые волны распространяются по всему черепу при наложении камертона на любом его участке. Поэтому некоторые авторы считают целесообразным устанавливать камертон не на область сосцевидных отростков, а на срединной линии черепа. При этом оба уха ставятся в равноценные условия.

Чтобы исследование производилось всегда в одних и тех же условиях, сила удара должна быть максимальной (для получения наибольшей длительности звучания камертона). Нажим камертона на кожу головы должен быть достаточно сильным.

Исследование костной проводимости обычно производится при открытых ушах больного; на полученные при этом результаты оказывает маскирующее влияние шумовое окружение и восприятие колебаний камертона через воздух. Чтобы избежать таких помех, Г. И. Гринберг сконструировал специально устроенные боксы - загораживатели ушей, которые представляют собой деревянные ящички, обвернутые снаружи и изнутри ватой.

В норме костная проводимость короче воздушной, так как звуковые волны встречают в костной ткани более сильное сопротивление, на что уходит часть звуковой энергии.

В начале исследования проводят три опыта: Вебера, Ринне и Швабаха.

1. Опыт Ринне заключается в сравнении воздушной и костной проводимости. Звучащий камертон С128 ставят на сосцевидный отросток исследуемого и, включив секундомер, замечают, сколько времени он звучал. По прекращении звучания на сосцевидном отростке подносят камертон к отверстию слухового прохода. У здорового человека проводимость через воздух больше проводимости через кость - это обозначают как «положительный опыт Ринне». При наличии же поражения в среднем ухе или вообще звукопроводящего аппарата опыт Ринне может быть отрицательным, т. е. звучание с кости будет продолжительнее звучания через воздух; обычно это указывает на заболевание звукопроводящего аппарата.

2. Опыт Вебера производится так. Звучащий камертон помещают на темя больного и спрашивают его, в каком ухе он слышит звучание. При здоровом состоянии ушей исследуемый слышит звучание в голове, не относя звук ни к одному из ушей. При нарушении звукопроводящего аппарата звук слышится в больном ухе, при нарушении звуковоспринимающего аппарата он слышен в здоровом ухе. Известно несколько попыток дать объяснение усилению костной проводимости при заболевании среднего уха. Некоторые указывают, что при здоровом состоянии ушей звуковые волны от звучащего камертона, беспрепятственно распространяясь по черепу, как бы выходят через уши в окружающую среду и не задерживаются в каком-либо ухе. При наличии препятствия в виде воспалительного процесса среднего уха или инородного тела (серная пробка) в слуховом проходе звуковые волны, отражаясь от препятствия, как бы снова ударяют в звуковоспринимающий аппарат внутреннего уха и звучат в больном ухе. При поражении же звуковоспринимающего аппарата звук может появиться только в здоровом ухе.
Так, Бецольд считает, что при заболеваниях звукопроводящего аппарата ограничение движений слуховых косточек создает условия для худшей передачи через воздух, чем через кость.

Г. Г. Куликовский, исследуя слуховую функцию больных в звуконепроницаемой камере, зарегистрировал незначительное укорочение костной проводимости при поражении звукопроводящего аппарата. Он считает, что наблюдающееся в обычных условиях исследования слуха удлинение костной проводимости у этого рода больных зависит от неблагоприятных в акустическом отношении условий восприятия звука.

При поражении мозга и его оболочек латеризации звука в опыте Вебера не наблюдается, если при этом нет нарушения слуховой функции.

3. Опыт Швабаха состоит в определении костной проводимости исследуемого путем сравнения с костной проводимостью здорового человека. С. этой целью звучащий камертон ставят на темя исследуемого и замечают время звучания. Получив на ряде здоровых людей длительность звучания камертона С128 на темени, сравнивают эту цифру с полученной у исследуемого и записывают в виде дроби: числитель - цифра, полученная у больного, знаменатель - цифра среднего звучания у ряда здоровых людей, например 15"/25". Эта дробь сразу укажет на состояние костной проводимости у данного больного - нормальная, удлиненная или укороченная. При нарушениях в проводящих сферах в спинномозговой жидкости, в оболочках и самих тканях мозга костная проводимость обычно укорочена. В редких случаях она удлинена - это чаще бывает при поражении в диэнцефальной области. Также она удлинена при отосклерозе , что отличает это заболевание от неврита слухового нерва. Механизм этих изменений еще не выяснен.

Опыт Желле (Gelle) состоит в следующем. К темени приставляют звучащий камертон и одновременно производят сгущение воздуха в наружном слуховом проходе резиновым баллоном - больной ощущает в этот момент ослабление звука, вызванное вдавлением стремени в нишу овального окна и вследствие этого повышением внутрилабиринтного давления. В случае анкилоза стремечка изменения звука не происходит, так же как не происходит повышения внутрилабиринтного давления. Этот опыт дает возможность диагностировать анкилоз стремечка. Но может случиться, что даже при нормально подвижном стремени сгущение воздуха в слуховом проходе не вызовет изменения звучания.

Исследование вестибулоокулярных рефлексов (нистагм, проба кукольных глаз, калорическая проба.

Дуга вестибулоокулярных рефлексов: вестибулярный аппарат – вестибулярные ядра (VIII пара) – ядра нервов глазодвигательных мышц (III, IV, VI пары). Нистагм – медленное движение глаз в одну сторону, сменяющееся быстрым скачком в обратную сторону. Это позволяет удерживать взор в постоянном направлении во время вращения головы. Медленная фаза нистагма представляет собой стволовой вестибуло-окулярный рефлекс; быстрая фаза –обусловлена командами из префронтальной коры. Проба кукольных глаз – один из способов проверки вестибулоокулярных рефлексов. Осуществляют медленный поворот головы в горизонтальной, затем в вертикальной плоскости. В норме глаза двигаются в направлении, противоположном повороту головы. Движения глаз рефлекторные, регулируются стволовыми центрами и обусловлены импульсацией от вестибулярного аппарата и проприорецепторов шеи. При сохраненном сознании эти рефлексы подавляются корой больших полушарий за счёт фиксации взора, и появляются лишь при отсутствии корковых влияний. Так, например, содружественное движение глаз в полном объёме при пробе кукольных глаз позволяет утверждать, что кома не связана с повреждением ствола мозга. Калорическая проба (холодовая проба)

Орошение наружного слухового прохода холодной водой вызывает движение эндолимфы. Если пути от лабиринта к ядру глазодвигательного нерва в среднем мозге не повреждены, то глазные яблоки быстро смещаются в сторону раздражаемого уха и остаются в этом положении 30-120 сек. При сохранности полушарий головного мозга, например, при истерической коме, во время холодовой пробы возникает нистагм. Отсутствие нистагма свидетельствует о поражении или угнетении полушарий головного мозга.

Путь воздушной проводимости звука: наружный слуховой проход – среднее ухо – внутреннее ухо (Кортиев орган) – слуховой нерв.

Путь костной проводимости звука: кости черепа – внутреннее ухо (Кортиев орган) – слуховой нерв.

(а) Проба Вебера. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. При патологических процессах в среднем ухе звучащий камертон, поставленный на середину темени, воспринимается значительно сильнее на стороне поражения. При этом у пациента создаётся впечатление, что источник звука расположен сбоку, на стороне больного уха.

При поражения внутреннего уха или слухового нерва звук воспринимается лучше на здоровой стороне. У пациента создаётся впечатление, что источник звука расположен сбоку, на стороне здорового уха.

(б) Проба Ринне. Одна из проб для сравнения восприятия звука через воздух и черепную коробку. Ножку звучащего камертона ставят на сосцевидный отросток. Когда восприятие звука путём костной проводимости оканчивается, камертон подносят к уху пациента и отмечают продолжение восприятия звука теперь уже за счёт воздушной проводимости звука (положительный симптом Ринне). При поражении звукопроводящего аппарата (барабанная перепонка, среднее ухо, слуховые косточки) звук камертона ухом через воздух не воспринимается (отрицательный симптом Ринне).



Костная проводимость звука Воздушная проводимость звука

Среднее ухо состоит из барабанной полости, объем которой не превышает 1 см кубического. Внутри барабанной полости расположены три слуховые косточки: молоточек, стремечко и наковальня. Благодаря им осуществляется передача звуковых колебаний от барабанной перепонки. Колебания, при этом, усиливаются.
Интересным является тот факт, что вышеуказанные косточки – самые мелкие во всем скелете человека. Молоточек имеет рукоятку, благодаря которой соединен с барабанной перепонкой, и головку, которая связывает его с наковальней. Наковальня связана со стремечком, которое закрывает овальное окошко уже внутреннего уха. Не стоит забывать о том, что среднее ухо имеет соединение с носоглоткой благодаря евстахиевой трубе.
Основной функцией трубы является выравнивание давления с наружной и внутренней части барабанной перепонки.

Строение среднего и внутреннего уха

В случае воздушной проводимости звуковые волны попадают в наружный слуховой проход и вызывают колебания барабанной перепонки, передающиеся на слуховые косточки - молоточек, наковальню и стремечко; смещение основания стремечка, в свою очередь, вызывает колебания жидкостей внутреннего уха и затем - колебания основной мембраны улитки.

6.3.5 . Воздушная проводимость звука

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).


Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.

Существует множество различных диагнозов, которые люди получают посещая ЛОРа или сурдолога. Одна из характерных черт кондуктивной тугоухости -- большая разница между воздушной и костной проводимостями. Вот о ней и подробнее.

Существует множество медицинских терминов и определений тугоухости и они определенно полезны в постановке диагноза. Если же вопрос касается исправления слуха, то можно смотреть на определенно другие вещи. Характерной чертой кондуктивной тугоухости и главным отличием от нейросенсорной (или сенсоневральной) состоит в том, что просматривается слишком большая разница между костной и воздушной проводимостями. Затем это тщательно врачи проверяют. Именно в этом случае предлагают сделать операцию на ухе и возвратить слух -- но там слишком много нюансов и мало гарантий. Потому, предлагаю удостовериться, что проблема не сильно критична у доктора и приступить действительно к исправлению.

Обычная разница между костным и воздушным проводимостями слуха составляет от нескольких децибел до может 10дБ максимум. Зачастую до 5дБ. Главный же момент состоит в том, что в повседневной жизни человек непосредственно опирается всегда на воздушную проводимость. И когда разница достигает уже серьезных 20-30дБ -- дело обстоит явно плачевно.

Не смотря на то, что ситуация кажется малоприятной и более сложной, чем исправить НСТ -- это неправда. Кондуктивная тугоухость исправляется в разы скорее. Если в случае нейросенсорной тугоухости нужно двигать костное проведение слуха, а затем лишь воздушное -- тут уже половина работы сделана давно. Пока будет исправляться ошибка из-за которой такой большой костно-воздушный интервал имеет место быть, то и костная еще поднимется. Это самый простой вариант для исправления слуха из возможных.

А теперь более подробно об этом интервале. Любой звук, который слышит человек всегда переводится в "костную" проводимость, а затем в электрический сигнал для психики. Если же звук не мощный и не громкий он не может иметь явно "вибрирующей" составляющей и потому может восприниматься человеком лишь с помощью воздушного проведения -- мембраны. И те самые 20-40дБ разницы делают все буквально ужасным. Слабые и мало мощные звуки услышать катастрофически тяжело.

Если понаблюдать за людьми с такой проблемой, то можно много чему удивиться. Во-первых, когда звуки громкие и хоть сколько-нибудь мощные -- они все прекрасно слышат. Т.е. проблема тихой речи хоть и есть -- она не настолько масштабна. Да, они упускают детали звуков, но никаких шумов или чего-то неприятного не испытывают. Только неразборчиво порой слышно: потеря детализации.

Обычно такая большая разница между костной и воздушной проводимостями набирается долгие годы. Вначале было 5-10дБ, потом уже тяжелые 15-20дБ и более. Что же происходит за эти годы? Человек начинает сомневаться сможет ли он расслышать. С каждым днем он все больше сомневается и беспокоится о том, насколько детально услышит. Человек с конудктивной тугоухостью вроде бы и слышит, но вот для ума в плане распознавание речи -- крайне недостаточно. Привыкает не слышать, а вместо реальных звуков -- додумывать недостающие, продолжая волноваться и печалиться.

Конечно же, если забросить дело, то и костная проводимость уйдет вниз, будет падение повсюду. Но что можно сделать? Центральный ответ очень прост: перестать беспокоится по поводу слышно или нет, есть ли проблема с ушами или ее нет. Единственная причина почему такая разница имеет место быть -- это привычное беспокойство из-за того как слышно. Эта привычка мешает работать ушам в естественном ритме, да и занимают ум бесполезной работой под названием "сомнения".

Конечно же, нужно не боятся что-то не услышать. Следует внимательно наблюдать как слышно, замечать нестабильность ситуации. Обычно разница между костным и воздушным проводимостями звука сокращается крайне быстро, т.к. не имеет больших физиологических отклонений, которые надо было бы как-то изменить.

Стоит внимательно посмотреть на аудиограмму и увидеть, где же есть самая большая разница, а где и гораздо меньше. Все частоты отвечают за какую-то часть воспринимаемого мира. И исходя из аудиограммы можно увидеть, что кто-то сомневается больше всего в частотах характерных для шепота, кто-то в мужском речевом диапазоне. Отдельно стоит отметить ситуации, когда кто-то просто сомневается там, где слышит достаточно хорошо при определенно сильном падении слуха в другом месте.

В силу того, костную проводимость редко даже замеряют до 8кГц -- разница всегда наблюдается именно в деталях речевого диапазона. Но все то же будет верно и в случае проблем с высокими частотами.

Есть еще нюанс в том, что этот костно-воздушный интервал нужно не просто сократить, а привести в норму -- тогда будет слышно действительно хорошо. Пока он придет в норму, можно и общее падение устранить, если таковое наблюдается, подтягивая костную проводимость. Если сократить сам интервал на 10дБ из всего 25дБ -- то это не будет субъективно ощущаться глобальным прогрессом. Нужно не просто перестать сомневаться, но затем и привыкнуть использовать доступное, доводя дело до нормы или идеала.

Такое падение (с большим костно-воздушным интервалом) характерно для легких падений или уже в случае 3-4 степени НСТ. Во всех случаях есть прекрасная возможность заметив сомнения и волнения сократить падение на 20-25дБ, а порой и на 40дБ.

Сами сомнения порождают мысли и ум постоянно отвлекается на рассуждения вместо реальных звуков. И если не сомневаться как в физической возможности слышать, так и не мешать себе слушать -- все кардинально меняется.

Более точные результаты дает исследование слуховой функции камертонами . Для практических целей достаточно иметь 2 камертона: один-в 128 колебаний в секунду, другой - в 1024-2048 колебаний в секунду. Для более точного анализа слуховой функции необходимо иметь в своем распоряжении набор камертонов и свисток Гальтона.

При помощи камертонов определяется, как и при помощи речи воздушная проводимость звука. Для этого перед ухом больного держат звучащий камертон и определяют количество секунд, в течение которых больной слышит этот звук. Острота слуха определяется дробью, где числителем служит число секунд слышимости больным, а знаменателем - продолжительность в секундах нормальной слышимости для данного камертона.

Исследование костной проводимости , имеющее большое значение для дифференциальной диагностики заболевания слухового аппарата, производится при помощи камертона в 128 колебаний в секунду. Если поставить на темя больного ножку звучащего камертона, то при здоровых ушах звук ощущается в голове (опыт Вебера). В случае нарушения звукопроводящего аппарата одной стороны (при всех заболеваниях среднего уха) звук камертона лучше слышен в больном ухе (латерализация звука).

Это одностороннее усиление звука через кость объясняется затруднением истечения звуковых волн из лабиринта вследствие наличия препятствия в среднем ухе. Такой результат опыта Вебера наблюдается лишь при здоровом внутреннем ухе. В противном случае (поражение лабиринта и слухового нерва) звук камертона, стоящего на темени, будет лучше слышен в здоровом ухе, а при двухстороннем поражении - в менее пораженном.

Таким образом, опыт Вебера во многих случаях даст возможность отличить заболевание среднего уха от внутреннего, а иногда и отметить начало перехода процесса среднего уха на лабиринт. За последнее говорит неожиданный перенос латерализации звука с больной стороны на здоровую.

Очень важные указания дает сравнительная оценка продолжительности восприятия звука через кость и воздух, что составляет сущность опыта Ринне. Это исследование производится следующим образом. Ножка звучащего камертона (128 колебаний в секунду) ставится на сосцевидный отросток исследуемого уха. Когда больной перестает слышать звук камертона, его отнимают от кости и приближают к слуховому проходу.

Нормальное ухо воспринимает еще некоторое время звучание камертона через воздух, т. е. воздушная проводимость больше костной (по ожительный Ринне). Если больной не слышит звука через слуховой проход, значит - костная проводимость больше воздушной (отрицательный Ринне).

Это исследование имеет большое значение для дифференциальной диагностики заболеваний среднего и внутреннего уха. Положительный опыт Ринне, при наличии понижения слуха, говорит о локализации процесса во внутреннем ухе. Если же костная проводимость больше воздушной (отрицательный Ринне), то это служит доказательством поражения звукопроводящего аппарата. При комбинированном или двухстороннем заболевании диагностика локализации процесса иногда встречает очень большие трудности, и в таких случаях значение опытов Вебера и Ринне значительно уменьшается.