Биохимические изменения соединительной ткани при старении и некоторых патологических процессах. Изменения коллагена, связанные с возрастом Изменения соединительной ткани при старении коллагенозах

Министерство здравоохнанения Республики Беларусь

УО «Витебский государственный ордена Дружбы народов

медицинский университет»

Кафедра Общей и клинической биохимии

Реферат на тему:

Изменение соединительной ткани при старении,коллагенозах и заживлении ран

Выполнила:

Студентка 37 группы 2 курса

Лечебного факультета

Минина Е.Г.

Проверил:

Гребенников И.Н.

Витебск, 2011

    Введение.

    Нарушения обмена веществ и энергии на:

    Молекулярном уровне;

    Клеточном уровне;

    Органном и тканевом уровнях;

    Уровне целостного организма.

    Неравномерными, разнонаправленными изменениями обмена веществ и энергии - характеризуется старение.

    Установление нарушения обмена веществ и энергии.

    Лечение болезней обмена веществ и энергии.

    Заключение.

    Литература.

Введение.

Нарушение обмена веществ и энергии лежат в основе повреждений органов и тканей, ведущих к возникновению болезни . Происходящие при этом изменения в протекании химических реакций сопровождаются большими или меньшими сдвигами в энергообразующих и энергопоглощающих процессах. Различают 4 уровня, на которых могут происходить нарушения обмена веществ и энергии: молекулярный; клеточный; органный и тканевой; целостный организм. Нарушения обмена веществ и энергии на любом из этих уровней могут носить первичный или вторичный характер. Во всех случаях они реализуются на молекулярном уровне, на котором изменения обмена веществ и энергии приводят к патологическим нарушениям функций организма.

Нормальное протекание метаболических реакций на молекулярном уровне обусловлено гармоничным сочетанием процессов катаболизма и анаболизма. При нарушении катаболических процессов прежде всего возникают энергетические трудности, нарушаются регенерация АТФ, а также поступление необходимых для биосинтетических процессов исходных субстратов анаболизма. В свою очередь, первичное или связанное с изменениями процессов катаболизма повреждение анаболических процессов ведет к нарушению воспроизведения функционально важных соединений - ферментов, гормонов и др. Нарушение различных звеньев метаболических цепей неравнозначно по своим последствиям. Наиболее существенные, глубокие патологические изменения катаболизма происходят при повреждении системы биологического окисления при блокаде ферментов тканевого дыхания, гипоксии и др. или повреждении механизмов сопряжения тканевого дыхания и окислительного фосфорилирования (например, разобщение тканевого дыхания и окислительного фосфорилирования при тиреотоксикозе). В этих случаях клетки лишаются основного источника энергии, почти все окислительные реакции катаболизма блокируются или теряют способность аккумулировать освобождающуюся энергию в молекулах АТФ. При ингибировании реакций цикла трикарбоновых кислот выработка энергии в процессе катаболизма сокращается примерно на две трети. При нарушении нормального течения гликолитических процессов (гликолиза, гликогенолиза) организм лишается способностиадаптироваться к гипоксии, что особенно отражается на функционировании мышечной ткани. Нарушение использования углеводов, уникальных метаболических источников энергии в условиях недостатка кислорода, является одной из причин существенного снижения мышечной силы у больных сахарным диабетом. Ослабление гликолитических процессов затрудняет метаболическое использование углеводов, ведет к гипергликемии, переключению биоэнергетики на липидные и белковые субстраты, к угнетению цикла трикарбоновых кислот в результате недостатка щавелево-уксусной кислоты. Возникают условия для накопления недоокисленных метаболитов - кетоновых тел, усиливается распад белков, интенсифицируется глюконеогенез. Развиваются ацетонемия, азотемия, ацидоз .

Репарация повреждений межклеточного матрикса в норме

Катаболизм белков межклеточного матрикса

МАТРИКСА

ОСОБЕННОСТИ МЕТАБОЛИЗМА МЕЖКЛЕТОЧНОГО

В катаболизме белков межклеточного матрикса главная роль принадлежит металлопротеиназам - Са-зависимым, цинксвязывающим эндопептидазам,. Регуляторами их активности служат тканевые ингибиторы металлопротеиназ, а также цитокины.

Коллагены - медленно обменивающиеся белки: время их полужизни измеряется неделями или месяцами. Время полужизни эластина в тканях человека - около 75 лет.

Коллагеназа перерезает все три пептидные цепи коллагена между остатками глицина и лейцина . Образующиеся фрагменты денатурируют и гидролизуются разными пептидгидролазами. Содержание гидроксипролина в крови и моче отражает баланс скорости катаболизма коллагена и гидроксипролина. При некоторых болезнях, связанных с поражением соединительной ткани, например при гиперпаратироидизме, экскреция гидроксипролина увеличивается вследствие ускоренного распада коллагена.

Протеогликаны обмениваются с высокой скоростью. Время полужизни протеогликанов межклеточного матрикса - дни или недели, клеточной поверхности - часы. Разрушаются протеогликаны в лизосомах.

Кортизон и его аналоги угнетают биосинтез коллагена фибробластами, тормозят биосинтез гликозаминогликанов. Они активируют ферментный катаболизма коллагена. Альдостерон, дезоксикортикостерон усиливают биосинтез «основного вещества» соединительной ткани. Тироксин вызывает деполимеризацию гиалуроновой кислоты, а соматотропный гормон передней доли гипофиза стимулирует включение пролина в полипептидную цепь тропоколлагена.

В матриксе могут возникать отдельные очаги повреждения (например, в результате случайного протеолиза). В зоне нарушения активируются металлопротеиназы. Происходит деградация поврежденных и неправильно ориентированных молекул. Базальная мембрана служит матрицей для сборки новой мембраны, замещающей поврежденную.

В заживлении ран участвует ряд цитокинов, но особая роль принадлежит трансформирующему фактору роста (ТФР-р). ТФР-р индуцирует синтез коллагена, фибронектина, ламинина, гликозамингликанов и подавляет их деградацию. ТФР-Р стимулирует синтез интегринов, регулирующих образование компонентов межклеточного матрикса.

При старении происходитуменьшение содержания воды и отношения основное вещество/волокна за счет нарастания содержания коллагена и снижения концентрации гликозаминогликанов, особенно гиалуроновой кислоты. Увеличивается число сшивок в коллагене, уменьшается его эластичность (процесс «созревания» фибриллярных структур соединительной ткани). Это нормальный итог протекающих в организме метаболических процессов.

В большинстве органов при старении происходит увеличение количества соединительной ткани. Морфологические изменения при старении наблюдаются во всех частях соединительной ткани: клеточных элементах, волокнистых структурах и в аморфном компоненте межклеточного вещества.

Коллагеновые волокна при старении характеризуются пониженной оксифилией и появлением очаговой пикринофилии и базофилии. Одновременно коллагеновые волокна приобретают способность окрашиваться подобно эластину (эластоподобная дистрофия). Часть коллагеновых волокон становится грубее, утрачивает четкие контуры, гомогенизируется и гиалинизируется. Наряду с утолщенными волокнами наблюдаются истонченные, иногда происходит их фрагментация. Отмечается резистентность коллагеновых волокон к воздействию трипсина, пепсина и коллагеназы и нарастает способность их связывать липиды. Качественные изменения свойств коллагена являются следствием образования между цепями макромолекулы коллагена ковалентных сшивок, например, между их аминокислотами - лизином и тирозином. Из биохимических изменений коллагена наиболее существенными является увеличение содержания оксипролина и оксилизина.

Эластические волокна при старении характеризуются набуханием, разволокнением, очаговой фрагментацией, зернистым распадом, появлением повышенного сродства к солям (так называемый эластокальциноз). В эластических волокнах возрастает чувствительность к эластазе, трипсину. По мере старения увеличиваются участки лизиса в эластических волокнах и исчезает фибриллярный компонент. В возрасте старше 100 лет у человека отмечается полный распад эластических волокон с образованием на их месте аморфных масс.

В соединительной ткани при старении уменьшается аморфный компонент межклеточного вещества. В основном веществе сокращается содержание гиалуроновой кислоты и увеличивается количество сульфатированных гликозамино-гликанов и нейтральных мукополисахаридов. Количество клеток соединительной ткани и их функциональная способность при старении уменьшается. Возрастные изменения структуры клеток соединительной ткани не отличаются принципиально от таковых в других тканях.

У людей в возрасте 112-114 лет в соединительной ткани кожи часто встречаются разрушенные клетки, характеризующиеся почти полным отсутствием цитоплазмы («голые ядра»).

Возрастные перестройки соединительной ткани приводят к склерозу внутренних органов. Это явление некоторые исследователи обозначили как «физиосклероз». Морфологические изменения соединительной ткани в органах нарушают межтканевые и межклеточные взаимодействия и влияют на уровень метаболических процессов в специализированных клетках.

- 26.35 Кб

Министерство здравоохранения Республики Беларусь

Витебский государственный ордена Дружбы народов медицинский университет

Кафедра биологической химии

Реферат на тему:

Изменения соединительной ткани при старении, коллагенозах и заживлении ран

Выполнила:

Студентка 2 курса

лечебного факультета

18 группы

Виноградова Д.А.

Преподаватель:

Козловская С.П.

Витебск, 2014

План:

1. Биохимические изменении соединительно ткани при старении Стр.3

2. Диффузные болезни соединительной ткани (коллагенозы) Стр.3
3. Изменение соединительной ткани при заживлении ран Стр.6

4. Заключение Стр.13

5. Список используемой литературы Стр.14

Биохимические изменения соединительной ткани при старении

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани). Следует помнить, что старение коллагена in vivo неравнозначно износу. Оно является своеобразным итогом протекающих в организме метаболических процессов, влияющих на молекулярную структуру коллагена.

Диффузные болезни соединительной ткани (коллагенозы)

Основное место в патологии соединительной ткани (далее СТ) занимают системные ее поражения, которые обусловлены нарушениями обмена веществ или иммунного гомеостаза и отражают несостоятельность различных функций СТ. Существуют первичные и вторичные системные поражения СТ. Первичные поражения бывают врожденные и наследственные. Врожденные и наследственные первичные системные поражения СТ обусловлены пороками развития и нарушениями обмена веществ. К ним, в частности относятся мукополисахаридозы, синдром Морфана, несовершенный остеогенез.

Системные первичные поражения СТ приобретенного характера включают большую группу диффузных болезней СТ – коллагеновых болезней (коллагенозы), характеризующиеся генерализованным поражением СТ. Этиологическими факторами могут явиться: лекарственная непереносимость (антибиотиков, сульфанидамидов), охлаждение, инфекция (чаще стрептококковая), чрезмерная инсоляция, вибрация, физическая или психическая травма. Определенное значение имеют нарушения функции гипоталамо-гипофизарно- надпочечниковой системы и наследственная предрасположенность.

Заболевания систем СТ являются классическим примером органоспецифических аутоиммунных болезней. Об этом свидетельствуют:

· наличие аутоантител;

· обнаружение в очаге поражения комплексов антиген-антитело;

· скопление в пораженных тканях плазматических и лимфоидных клеток, имеющих отношение к продукции циркулирующих антител;

· гипергаммаглобулинемия;

· эффективность лечения иммунодепрессантами, в частности, кортикостероидами;

· сочетание с другими аутоиммунными болезнями (тиреоидитом Хасимото и др.).

Инициальным звеном процесса является стимуляция иммунокомпетентной системы каким-либо антигеном с участием аутоантигена, выработкой аутоантител и рядом иммунных нарушений. Появлению аутоантигенов способствует высвобождение кислых гидролаз в очаге дезорганизации СТ, усиление гидролитического расщепления тканей и клеток. Антитела образуются против всех элементов СТ и направлены против антигенов собственных тканей. Могут развиваться аутоиммунные синдромы, связанные с циркулирующими антителами – аутоиммунная гемолитическая анемия, аутоиммунная тромбоцитопения, гломерулонефрит и др.

Возможен и второй механизм развития диффузных болезней – нарушение метаболизма коллагена, в частности, повышенная скорость его биосинтеза, формирование малоустойчивых коллагеновых структур с повышенным распадом, образование избыточного фиброза. Но и в этом случае повреждения коллагена могут быть обусловлены циркулирующими в крови комплексами антиген-антитело.

Несмотря на большое своеобразие отдельных нозологических форм диффузных болезней СТ все они объединены рядом общих признаков, из которых основной – иммунообусловленный системный воспалительный процесс. Кроме того, всем этим заболеваниям свойственны лихорадка, артриты, рецидивирующие полисерозиты, разнообразная висцеральная патология (миоэндокардиты, гломерулонефриты или амилоидоз почек, поражения печени, гепатолиенальные синдромы, генерализованная лимфаденопатия), в большинстве случаев рецидивирующее и прогрессирующее течение.

Иммунное повреждение тканей – основной компонент патогенеза диффузных болезней СТ. При различных нозологических формах оно выражено неодинаково, лишено строгой нозологической специфичности.

К диффузным болезням СТ относятся:

· ревматизм, характеризующийся преимущественным поражением сердца и сосудов;

· ревматоидный артрит – поражения, главным образом, суставов;

· симметричный полисиновит, приводящий к постепенной деструкции суставов;

· системная склеродермия – прогрессирующее полисиндромное заболевание с характерным изменение кожи, опроно-двигательного аппарата, внутренних органов (легкие, сердце, пищеварительный тракт, почки) и распространенными вазоспастическими нарушениями по типу синдрома Рейно, в основе которых лежат поражения СТ с преобладанием фиброза и сосудистая патология в виде облитерирующего эндартериита;

· системная красная волчанка, проявляющаяся поражением всей СТ, многих органов и систем;

· узелковый периартериит – системное поражение сосудов с вовлечением в процесс всех слоев сосудистой стенки (панартериит);

· синдром Гудпасчера – иммуновоспалительное заболевание мелких сосудов легких и почек, характеризующееся классической триадой – легочные кровотечения, гломерулонефрит, антитела к антигенам основной мембраны капилляров легких и почек (см. выше);

· болезнь Бехтерева – преимущественно поражение составно-связочного аппарата позвоночника, периферических суставов с вовлечением в процесс сердца, почек, аорты;

· синдром Шегрена («сухой синдром») – аутоиммунное поражение экзокринных (прежде всего слезных и слюнных) желез, сопровождающееся их гипофункцией, сочетающееся с системными иммуновоспалительными заболеваниями;

· ряд других болезней.

Смешанные формы диффузных болезней СТ, характеризуются наличием признаков двух или более болезней, как, например, синдром Шарпа. Этот синдром проявляется сочетанием клинических признаков свойственных системной красной волчанке, склеродермии, ревматоидному артриту и дерматомиозиту, а также высоким титром антител к ядерному рибонуклеопротеиду в сыворотке крови; прогноз синдрома относительно благоприятный.

К смешанным болезням СТ относят и саркоидоз – системное заболевание из группы гранулематозов, характеризующееся развитием эпителиоидно-клеточных гранулем, дистрофией, деструкцией, склерозом различных тканей и органов с нарушением функции.

Изменение соединительной ткани при заживлении ран

Фибробласты участвуют в заживлении ран. При заживлении ран эпидермис играет важную роль, которая заключается не только в восстановлении целостности кожных покровов, но и в регуляции роста и созревании грануляционной ткани. Преждевременная или затянувшаяся эпидермизация раневого дефекта вызывает формирование некачественного рубца. В связи с этим метаболические изменения в эпидермисе лежат в основе структурно-функциональных превращений на уровне кожи, возникающие при ликвидации раневого дефекта. Происходящие в эпидермисе перестройки связаны с переходом клеток на измененный, оптимизированный, с точки зрения гомеостаза, уровень функционирования. Наибольшим структурно-метаболическим сдвигам подвергнут ростковый слой Мальпиги, включающий в себя базальный и шиповатый слои, клетки которых определяют формирование вышележащих слоев эпидермиса.

Дефицит витамина С.

Дистрофию соединительной ткани

Цинга́- болезнь, вызываемая острым недостатком витамина C (аскорбиновая кислота), который приводит к нарушению синтеза коллагена, и соединительная ткань теряет свою прочность.

Синдром Элерса-Данлоса

Синдром Элерса-Данло (Ehlers-Danlos) (СЭД; Q79.6) - генетически гетерогенное заболевание, обусловленное разнообразными мутациями в генах коллагена, либо в генах, отвечающих за синтез ферментов, принимающих участие в созревании волокон коллагена. Характеризуется гиперэластичностью кожи, подкожными сферулами, переразгибанием суставов, лёгкой ранимостью тканей и геморрагическим синдромом. Истинная распространённость неизвестна вследствие сложности верификации и большого числа лёгких форм, частота диагностированных случаев - 1 на 5000 новорождённых, тяжёлые формы встречают редко (1:100 000).

Латиризм - эпидемическая болезнь, неоднократно наблюдавшаяся во Франции, Италии, Алжире и Ост-Индии в неурожайные годы, когда жители, из-за дороговизны хлеба, пользовались, как пищевым средством, чиной или гороховником Lathyrus из сем. Papilionaceae. Различают несколько видов Lathyrus, из которых ядовитые семена дают L. cicera и L. clymenum. Болезнь наступает иногда уже после шестинедельного употребления семян чины, иногда же спустя несколько месяцев и поражает не только людей, но также и некоторых животных (лошадей, свиней, уток). Болезнь, во многом напоминающая спинно-мозговую сухотку, обусловлена, по всем вероятиям, поражением спинного мозга и характеризуется преимущественно явлениями паралича, особенно нижних конечностей. Чрезвычайно типична неправильная походка подобных больных. Иногда болезнь заканчивается гангреной нижних конечностей, как при хроническом отравлении спорыньей. Болезнь поражает преимущественно юный возраст; мужчин чаще, чем женщин.

Список используемой литературы

1.http://med-books.info/ veterinariya

2.http://znaiu.ru

3.http://forum.biomedis.ru

Описание работы

Общим возрастным изменением, которое свойственно всем видам соединительной ткани, является уменьшение содержания воды и отношения основное вещество/волокна. Показатель этого соотношения уменьшается как за счет нарастания содержания коллагена, так и в результате снижения концентрации гликозаминогликанов. В первую очередь значительно снижается содержание гиалуроновой кислоты. Однако не только уменьшается общее количество кислых гликозаминогликанов, но изменяется и количественное соотношение отдельных гликанов. Одновременно происходит также изменение физико-химических свойств коллагена (увеличение числа и прочности внутри- и межмолекулярных поперечных связей, снижение эластичности и способности к набуханию, развитие резистентности к коллагеназе и т.д.), повышается структурная стабильность коллагеновых волокон (прогрессирование процесса «созревания» фибриллярных структур соединительной ткани).

Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах. Роль коллагеназы при заживлении ран. Оксипролинурия

Биология и генетика

Роль коллагеназы при заживлении ран. Коллаген IX типа антипараллельно присоединяется к фибриллам коллагена II типа. Его глобулярный НК4домен основный он не связан с фибриллами коллагена II типа и поэтому к нему может присоединяться такой компонент матрикса как гиалуроновая кислота. Микрофибриллы которые образуются тетрамерами коллагена VI типа присоединяются к фибриллам коллагена II типа и к гиалуроновой кислоте.

Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах. Роль коллагеназы при заживлении ран. Оксипролинурия.

Как уже говорилось, межклеточный матрикс представляет собой супрамолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул. В организме человека межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Межклеточный матрикс костной и зубной ткани. Костная и зубная ткань - специализированный тип соединительной ткани. Эти ткани выполняют в организме человека следующие важные функции:

  1. из костей образуется скелет организма;
  2. кости защищают и поддерживают внутренние органы;
  3. кости служат местом депонирования кальция и неорганического фосфата;
  4. костный мозг входит в состав кроветворной и иммунной систем;
  5. зубы как часть жевательного аппарата входят в состав пищеварительной системы;
  6. зубы - часть речевого аппарата человека.

Замечательным свойством костей является сочетание в них таких качеств, как высокая прочность на разрыв с очень лёгким весом. Костная и зубная ткань отличаются высокой минерализацией (или кальцификацией) межклеточного матрикса и содержат по массе -50% неорганических соединений, 25% органических компонентов и 25% воды.

Неорганическая часть. В состав костей входит 99% всего кальция организма, 87% фосфора, ~ 60% магния и -25% натрия. Кальций в костях находится в форме минерала гидроксиапатита, примерный состав которого Са10(РО4)6(ОН)2. Гидроксиапатит образует кристаллы, имеющие обычно размер 20 × 5 × 1,5 нм. В костной ткани содержится много микроэлементов, таких как медь, стронций, барий, цинк, фтор и др., которые играют важную роль в обмене веществ в организме. Минеральная часть костей включает также карбонаты, гидроксиды и цитраты. Минеральный состав зуба различен в разных его частях. Твёрдые части зуба (эмаль, дентин и цемент) содержат от 70% (цемент и дентин) до 96 - 97% (эмаль) неорганических веществ. Основную часть этих веществ составляют фосфат кальция, входящий в состав кристаллов гидроксиапатита (75%), а также карбонат и фторид кальция. Мягкие части зуба (пульпа и периодонт) не относят к тканям с высокой степенью минерализации. Пульпа состоит из рыхлой волокнистой соединительной ткани (такая ткань находится практически во всех органах и образует их строму, или каркас), а периодонт образован плотной волокнистой соединительной тканью, которая также входит в состав сухожилий и связок.

Органическая часть. Органические вещества костного матрикса представлены белками, липидами и небольшим количеством протеогликанов. Основной белок костной ткани - коллаген I типа (90 - 95%). Кроме него, в матриксе костей присутствуют такие белки, как коллаген V типа, остеонектин, остеокальцин, так называемые морфогенетические белки кости (BMP) и ферменты - щелочная фосфатаза (в остеобластах) и кислая фосфатаза (в остеокластах). Оба эти фермента служат маркёрами соответствующих клеток костной ткани. Углеводная часть протеогликанов костного матрикса представлена дерматан- и кератансульфатами. Главный компонент органических веществ зубной ткани - коллаген I типа. Углеводы и липиды присутствуют в небольших количествах. Содержание органических веществ в твёрдых частях зуба варьирует от 2% (эмаль) до 30% (дентин и цемент). Содержание органических веществ в мягких частях зуба такое же, как в соответствующих видах соединительной ткани.

Mежклеточный матрикс суставного хряща. Основные компоненты межклеточного хрящевого матрикса - коллаген II типа, агрекан, гиалуроновая кислота и вода. Кроме них, в мат-риксе находятся малые протеогликаны, коллагены VI, IX, XI типов, связывающий белок, другие неколлагеновые белки (фибронектин, анкорин, хрящевой олигомерный белок, хонд-роадгерин), разнообразные ростовые факторы. "Эндоскелет" хрящевого матрикса образован фибриллярной сетью, которая состоит из коллагенов II, IX и XI типов и придаёт хрящу прочность. Коллаген XI типа находится внутри фибрилл, образованных коллагеном II типа, он играет определённую роль в сборке этих фибрилл. Коллаген IX типа антипараллельно присоединяется к фибриллам коллагена II типа. Его глобулярный НК4-домен - основный, он не связан с фибриллами коллагена II типа, и поэтому к нему может присоединяться такой компонент матрикса, как гиалуроновая кислота. Микрофибриллы, которые образуются тетрамерами коллагена VI типа, присоединяются к фибриллам коллагена II типа и к гиалуроновой кислоте. Кроме того, они могут присоединяться к клеткам, поэтому коллаген VI типа называют "мостовой" молекулой между поверхностью клетки и фибриллами коллагена во внеклеточном матриксе. Высокомолекулярные агрегаты, состоящие из агрекана и гиалуроновой кислоты, являются полианионами, так как содержат большое количество кислых групп. Это способствует высокой гидратации хрящевого матрикса и обеспечивает выполнение им рессорных функций. Содержание воды в суставном хряще непостоянно: при нагрузке жидкость вытесняется, пока давление набухания не уравновесит внешнюю нагрузку. Когда нагрузка прекращается, вода вновь возвращается в хрящ. Очень наглядно это проявляется в межпозвоночных дисках. Утром, после ночного сна, на долю воды приходится около 75% массы диска. При внешней нагрузке на диски в течение дня содержание воды уменьшается примерно на 20%. Вследствие того рост человека к вечеру на 1-2 см меньше, чем утром. У космонавтов в условиях невесомости отмечается увеличение роста даже на 5 см. Малые протеогликаны, например, декорин, присоединяются к фибриллам коллагена II типа; они влияют на фибриллогенез, так как ограничивают диаметр этих фибрилл. Важную роль в организации хрящевого межклеточного матрикса играет также фибронек-тин. Биологическое значение этих и других минорных компонентов хрящевого матрикса заключается в том, что они участвуют в сборке и организации высокомолекулярных компонентов межклеточного вещества и в регуляции функции хондроцитов.

Mежклеточный матрикс кожной ткани. Основной организующий компонент матрикса кожной ткани - коллаген VII типа. Пучки фибрилл, образованные димерами этого коллагена, своими С-концами могут присоединяться к lamina densa базальной мембраны (как бы "заякориваться" в ней) и образовывать петли в субэпидермисе. Такие "заякоренные" фибриллы могут соединять lamina densa базальной мембраны с "якорными дисками", которые находятся в более глубоких субэпителиальных слоях и по своему составу похожи на базальные мембраны (содержат коллаген IV типа). "Заякоренные" фибриллы также захватывают фибриллы коллагена I и III типов. Таким способом "заякоренные" фибриллы коллагена VII типа обеспечивают присоединение эпидермиса к дерме.

Базальные мембраны. Базальные мембраны - специализированная форма межклеточного матрикса. Они синтезируются различными клетками: эндотелиальными, эпителиальными, мышечными, нервными, жировыми. Базальные мембраны представляют собой тонкие слои, которые обычно отделяют клетки и клеточные слои от окружающей соединительной ткани. Например, они окружают отдельные мышечные волокна, жировые и шванновские клетки. В таких структурах, как почечные клубочки и лёгочные альвеолы, ба-зальные мембраны расположены между двумя различными слоями клеток и играют роль высокоселективного фильтрационного барьера. С помощью электронной микроскопии выявлена двухслойная структура базальных мембран:lamina mm, которая находится со стороны клеточной мембраны, и lamina densa, которая соединена с подлежащей соединительной тканью. Основными компонентами базальных мембран являются коллаген IV типа, ламинин, гепарансульфатсодержащие протеогликаны (ГСПГ). Нерастворимость и механическую стабильность базальных мембран обеспечивают молекулы коллагена IV типа, которые организуются в специальную опорную сеть. Эта эластичная трёхмерная сеть образует структурный остов, к которому прикрепляются другие компоненты базальных мембран. Ламинин взаимодействует практически со всеми структурными компонентами базальных мембран: коллагеном IV типа, нидогеном, ГСПГ.Нидоген формирует с ламинином нековалентно связанный комплекс. Кроме этого, нидоген имеет центр связывания коллагена IV типа и, таким образом, может играть роль "мостовой" молекулы между различными компонентами базальной мембраны.ГСПГ базальных мембран могут образовывать олигомеры, соединяясь концевыми доменами белкового ядра, а также связываться с ламинином и коллагеном IV типа. Базальные мембраны выполняют разнообразные и сложные функции. В почечных клубочках базальная мембрана служит полупроницаемым фильтром, препятствующим переходу макромолекул из плазмы в первичную мочу. Большое значение в этом процессе имеет высокий отрицательный заряд протеогликанов, который препятствует прохождению через базальную мембрану других отрицательно заряженных молекул (например, белков), а также отрицательно заряженных эритроцитов. Кроме этого, базальные мембраны играют важную роль в прикреплении и ориентации клеток в пространстве, в процессах эмбрионального развития и тканевой регенерации.

Известны 2 типа коллагеназ:

Тканевая коллагеназа присутствует у человека в различных органах и тканях. В норме она синтезируется клетками соединительной ткани, прежде всего, фибробластами и макрофагами. Тканевая коллагеназа - металлозависимый фермент, который содержит Zn2+ в активном центре. В настоящее время известно 4 изоформы этого фермента. Активность коллагеназы зависит от соотношения в межклеточном матриксе её активаторов и ингибиторов. Среди активаторов особую роль играют плазмин, калликреин и катепсин В (см. раздел 14). Тканевая коллагеназа обладает высокой специфичностью, она перерезает тройную спираль коллагена в определённом месте, примерно на 1/4 расстояния от С-конца, между остатками глицина и лейцина (или изолейцина). Образующиеся фрагменты коллагена растворимы в воде, при температуре тела они спонтанно денатурируются и становятся доступными для действия других протеолитических ферментов. Нарушение катаболизма коллагена ведёт к фиброзу органов и тканей (в основном печени и лёгких). А усиление распада коллагена происходит при аутоиммунных заболеваниях (ревматоидном артрите и системной красной волчанке) в результате избыточного синтеза коллагеназы при иммунном ответе.

Бактериальная коллагеназа синтезируется некоторыми микроорганизмами. Например,Clostridium histolyticum (возбудитель газовой гангрены) выделяет коллагеназу, расщепляющую пептидную цепь коллагена более чем в 200 местах. Этот фермент гидролизует следующую связь -X-Гли-Про-У- между звеньями X и Гли. Таким образом разрушаются соединительнотканные барьеры в организме человека, что обеспечивает проникновение (или инвазию) этого микроорганизма и способствует возникновению и развитию газовой гангрены. Сам возбудитель не содержит коллагена и поэтому не подвержен действию коллагеназы.

Заболевания, связанные с нарушением синтеза и созревания коллагена

Тип коллагена

Локализация коллагена в тканях

Заболевания

Причина

Клинические проявления

Кости, кожа, связки, сухожилия, склера, роговица, строма внутренних органов

Несовершенный остеогенез

Мутации в генах (более 160), чаще всего делеции и замены. Самая неблагоприятная - замена глицина на другую аминокислоту, в результате чего в молекуле проколлагена появляется перелом или изгиб, и нормальная тройная спираль не образуется

Повышенная ломкость костей, аномалии зубов, треугольная форма лица, гиперподвижность суставов, голубые склеры

Хрящи, межпозвоночные диски, стекловидное тело

Болезнь Книста

Делеция в гене, которая приводит к синтезу укороченных цепей коллагена

Укорочение и деформации конечностей, туго-подвижность суставов, кифосколиоз, миопия высокой степени

Синдром Стиклера и Вагнера

Образование терминирующего кодона, вследствие чего в стекловидном теле синтезируется половина молекулы коллагена

Прогрессирующая миопия, часто отслойка сетчатки; патология суставов по типу хронического остеоартрита

Кожа, сосуды, строма паренхиматозных органов, матка

Синдром Элерса-Данло-Русакова, IV тип

Мутации в гене (более 20) по типу делеции, вставок, замен. В результате этого синтезируется молекула коллагена с нарушением первичной структуры, которая отличается сниженной стабильностью. Фибриллы, которые образуют такие молекулы коллагена, тоньше нормальных и менее организованы

Спонтанные разрывы крупных сосудов, перфорации кишечника, разрывы беременной матки, спонтанный пневмоторакс

Базальные мембраны (почки и лёгкие)

Синдром Альпорта

Мутации в генах, которые сопровождаются нарушением образования базальных мембран

Преимущественное поражение почек, проявляющееся гематурией и протеинурией; при некоторых формах одновременно развивается диффузный эзофагеальный лейомиоматоз (доброкачественная опухоль гладких мышц пищевода).

Синдром Гудпасчера

Образование антител к молекулам коллагена IV типа

Гломерулонефрит, лёгочный гемосидероз

Кожа

Буллёзный эпидермолиз

Мутации в гене, приводящие к снижению общего количества «заякоренных» фибрилл в коже, а также синтез дефектных фибрилл

Эпидермис слабо связан с дермой, легко слущивается и образует пузыри (буллы), которые легко травмируются, и на их месте образуются эрозии


А также другие работы, которые могут Вас заинтересовать

73192. Функция потребления и мультипликатор (по Кейнсу) 199.67 KB
Мультипликатор - это числовой коэффициент показывающий зависимость изменения ВНП в соответствии с изменением какого-либо компонента совокупного спроса. Мультипликатор инвестиций будет выглядеть следующим образом: где MR1 - мультипликатор инвестиций...
73193. Объекты мониторинга: социум, среда, экономика 160.5 KB
Экологический мониторинг относится к информационной структуре системы управления и регулирования. Комплексный экологический мониторинг включает в себя как биологический так геофизический аспекты в качестве результата которого должна выступать оценка и прогноз состоянии...
73194. Математические понятия 112.5 KB
Понятия, которые изучаются в начальном курсе математику, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др.
73195. Охорона і захист права власності 85.33 KB
Охорона власності - це вжиття власником різноманітних заходів, спрямованих на забезпечення цілісності свого майна, його схоронності від найрізноманітніших небажаних обставин: негоди, стихійного лиха, нападу зловмисника, дикого звіра тощо.
73196. Экология микроорганизмов 34.63 KB
Данные биоценозы характеризуются относительным постоянством однако качественный и количественный состав микрофлоры организма человека меняется в течение жизни и зависит от пола возраста питания климата и др.
73197. Реальные газы и фазовые переходы 834 KB
Учёт конечных размеров молекул и сил взаимодействия между ними позволяет ввести поправки в уравнение Менделеева-Клапейрона и получить уравнение состояния идеальных газов. Пересечение изобары с изотермой даёт точки с соответствующими параметрами состояния.
73198. Физика атомного ядра. Радиоактивность 290 KB
Как уже известно современная физика установила что атом состоит из положительно заряженного ядра и окружающих его электронов. Каково же строение атомного ядра Ключом к изучению атомного ядра послужило открытие французского ученого А.
73199. Ядерные реакции. Искусственная радиоактивность. Элементарные частицы 272.5 KB
Ядра атомов нельзя разрушить ни нагреванием до многих тысяч градусов, ни охлаждением до самых низких температур. Для разрушения ядер нужны значительные затраты энергии. Как же это осуществить? Чтобы ответить на этот вопрос, необходимо уяснить смысл ядерных реакций.
73200. Основы молекулярно-кинетической теории. Термодинамические параметры. Масса и размеры молекул 348 KB
Все тела - твёрдые жидкие и газообразные - представляют собой совокупность большого числа атомов и молекул. При изучении свойств тел и физических явлений происходящих с телами возможны два направления исследований: а молекулярно-кинетическое устанавливает законы протекания различных...