Как называются не целые числа. Наибольшее общее кратное и наименьший общий делитель. Признаки делимости и методы группировки (2019)

Число — абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа - это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей - натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z . Можно сказать, чтоZ ={1,2,3,....}.

Рациональные числа - это числа, представимые в виде дроби, где m — целое число, а n — натуральное число. Для обозначения рациональных чисел используется латинская буква Q . Все натуральные и целые числа - рациональные. Также в качестве примеров рациональных чисел можно привести: ,,.

Действительные (вещественные) числа - это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел - это,,.

Любое действительное число можно отобразить на числовой прямой:


Для перечисленных выше множеств чисел справедливо следующее высказывание:

То есть множество натуральных чисел входит во множество целых чисел. Множество целых чисел входит во множество рациональных чисел. А множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.



Информация этой статьи формирует общее представление о целых числах . Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.

Навигация по странице.

Целые числа – определение и примеры

Определение.

Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.

Определение целых чисел утверждает, что любое из чисел 1 , 2 , 3 , …, число 0 , а также любое из чисел −1 , −2 , −3 , … является целым. Теперь мы легко можем привести примеры целых чисел . Например, число 38 – целое, число 70 040 – тоже целое, нуль – целое число (напомним, что нуль НЕ является натуральным числом, нуль – целое число), числа −999 , −1 , −8 934 832 – также являются примерами целых чисел.

Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …

Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.

Целые числа на координатной прямой

Определение.

Целые положительные числа – это целые числа, которые больше нуля.

Определение.

Целые отрицательные числа – это целые числа, которые меньше нуля.

Целые положительные и отрицательные числа можно также определить по их положению на координатной прямой. На горизонтальной координатной прямой точки, координатами которых являются целые положительные числа, лежат правее начала отсчета. В свою очередь точки с целыми отрицательными координатами располагаются левее точки O .

Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.

Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.

Целые неположительные и целые неотрицательные числа

Дадим определения целых неположительных чисел и целых неотрицательных чисел.

Определение.

Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами .

Определение.

Целые неположительные числа – это все целые отрицательные числа вместе с числом 0 .

Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.

Примерами целых неположительных чисел являются числа −511 , −10 030 , 0 , −2 , а в качестве примеров целых неотрицательных чисел приведем числа 45 , 506 , 0 , 900 321 .

Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать «a – целое неотрицательное число».

Описание изменения величин при помощи целых чисел

Пришло время поговорить о том, для чего вообще нужны целые числа.

Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.

Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).

В приведенных примерах изменение количества деталей можно описать при помощи целых чисел 400 , −100 и 0 соответственно. Положительное целое число 400 показывает изменение количества в положительную сторону (увеличение). Отрицательное целое число −100 выражает изменение количества в отрицательную сторону (уменьшение). Целое число 0 показывает, что количество осталось без изменения.

Удобство использования целых чисел по сравнению с использованием натуральных чисел заключается в том, что не нужно явно указывать увеличивается количество или уменьшается, - целое число определяет изменение количественно, а знак целого числа указывает направление изменения.

Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.

Повышение температуры, скажем, на 4 градуса выражается положительным целым числом 4 . Понижение температуры, например, на 12 градусов можно описать отрицательным целым числом −12 . А неизменность температуры – это ее изменение, определяемое целым числом 0 .

Отдельно нужно сказать о трактовке отрицательных целых чисел как величины долга. Например, если у нас есть 3 яблока, то целое положительное число 3 показывает количество яблок, которыми мы владеем. С другой стороны, если мы должны кому-либо отдать 5 яблок, а у нас их нет в наличии, то эту ситуацию можно описать при помощи отрицательного целого числа −5 . В этом случае мы «обладаем» −5 яблоками, знак минус указывает на долг, а число 5 определяет долг количественно.

Понимание отрицательного целого числа в качестве долга позволяет, например, обосновать правило сложения отрицательных целых чисел . Приведем пример. Если кто-то должен 2 яблока одному человеку и одно яблоко – другому, то общий долг составляет 2+1=3 яблока, поэтому −2+(−1)=−3 .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Алгебраические свойства

Ссылки

Wikimedia Foundation . 2010 .

  • Целующиеся милиционеры
  • Целые вещи

Смотреть что такое "Целые числа" в других словарях:

    Гауссовы целые числа - (гауссовы числа, целые комплексные числа) это комплексные числа, у которых как вещественная, так и мнимая часть целые числа. Введены Гауссом в 1825 году. Содержание 1 Определение и операции 2 Теория делимости … Википедия

    ЧИСЛА ЗАПОЛНЕНИЯ - в квантовой механике и квантовой статистике, числа, указывающие степень заполнения квант. состояний ч цами квантовомеханич. системы многих тождественных частиц. Для систем ч ц с полуцелым спином (фермионов) Ч. з. могут принимать лишь два значения … Физическая энциклопедия

    Числа Цукермана - Числа Цукермана такие натуральные числа, которые делятся на произведение своих цифр. Пример 212 число Цукермана, так как и. Последовательность Все целые числа от 1 до 9 являются числами Цукермана. Все числа, включащие ноль, не… … Википедия

    Целые алгебраические числа - Целыми алгебраическими числами называются комплексные (и в частности вещественные) корни многочленов с целыми коэффициентами и со старшим коэффициентом, равным единице. По отношению к сложению и умножению комплексных чисел, целые алгебраические… … Википедия

    Целые комплексные числа - гауссовы числа, числа вида а + bi, где а и b целые числа (например, 4 7i). Геометрически изображаются точками комплексной плоскости, имеющими целочисленные координаты. Ц. к. ч. введены К. Гауссом в 1831 в связи с исследованиями по теории… …

    Числа Каллена - В математике числами Каллена называют натуральные числа вида n 2n + 1 (пишется Cn). Числа Каллена впервые были изучены Джеймсом Калленом в 1905. Числа Каллена это особый вид чисел Прота. Свойства В 1976 году Кристофер Хулей (Christopher… … Википедия

    Числа с фиксированной точкой - Число с фиксированной запятой формат представления вещественного числа в памяти ЭВМ в виде целого числа. При этом само число x и его целочисленное представление x′ связаны формулой, где z цена младшего разряда. Простейший пример арифметики с… … Википедия

    Числа заполнения - в квантовой механике и квантовой статистике, числа, указывающие степень заполнения квантовых состояний частицами квантово механической системы многих тождественных частиц (См. Тождественные частицы). Для системы частиц с полуцелым Спином… … Большая советская энциклопедия

    Числа Лейланда - Число Лейланда это натуральное число, представимое в виде xy + yx, где x и y целые числа больше 1. Первые 15 чисел Лейланда: 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124, 1649 последовательность A076980 в OEIS.… … Википедия

    Целые алгебраические числа - числа, являющиеся корнями уравнений вида xn + a1xn 1 +... + an = 0, где a1,..., an целые рациональные числа. Например, x1 = 2 + Ц. а. ч., так как x12 4x1 + 1 = 0. Теория Ц. а. ч. возникла в 30 40 x гг. 19 в. в связи с исследованиями К.… … Большая советская энциклопедия

Книги

  • Арифметика: Целые числа. О делимости чисел. Измерение величин. Метрическая система мер. Обыкновенные , Киселев, Андрей Петрович. Вниманию читателей предлагается книга выдающегося отечественного педагога и математика А. П. Киселева (1852-1940), содержащая систематический курс арифметики. Книга включает шесть разделов.…

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы НАМНОГО упростить себе жизнь когда надо что-то вычислить, чтобы выиграть драгоценное время на ОГЭ или ЕГЭ, чтобы сделать меньше глупых ошибок - читай этот раздел!

Вот чему ты научишься:

  • как быстрее, легче и точнее считать, используя группировку чисел при сложении и вычитании,
  • как без ошибок, быстро умножать и делить, используя правила умножения и признаки делимости ,
  • как значительно ускорить расчеты с помощью наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД).

Владение приемами этого раздела может перевесить чашу весов в ту или иную сторону...поступишь ты в ВУЗ мечты или нет, придется тебе или твоим родителям платить огромные деньги за обучение или ты поступишь на бюджет.

Let"s dive right in... (Поехали!)

P.S. ПОСЛЕДНИЙ ЦЕННЫЙ СОВЕТ...

Множество целых чисел состоит из 3 частей:

  1. натуральные числа (рассмотрим их подробнее чуть ниже);
  2. числа, противоположные натуральным (все станет на свои места, как только ты узнаешь, что такое натуральные числа);
  3. ноль - " " (куда уж без него?)

буквой Z.

Натуральные числа

«Бог создал натуральные числа, всё остальное - дело рук человеческих» (c) Немецкий математик Кронекер.

Натуральные числа - это числа, которые мы употребляем для счета предметов и именно на этом основывается их история возникновения - необходимости считать стрелы, шкуры и т.д.

1, 2, 3, 4... n

буквой N.

Соответственно, в это определение не входит (не можешь же ты посчитать то, чего нет?) и тем более не входят отрицательные значения (разве бывает яблоко?).

Кроме этого, не входят и все дробные числа (мы также не можем сказать « у меня есть ноутбука», или «я продал машины»)

Любое натуральное число можно записать с помощью 10 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Таким образом, 14 - это не цифра. Это число. Из каких цифр оно состоит? Правильно, из цифр и.

Сложение. Группировка при сложении чтобы быстрей считать и меньше ошибаться

Что интересного ты можешь сказать про эту процедуру? Конечно, ты сейчас ответишь «от перестановки слагаемых значение суммы не меняется». Казалось бы, примитивное, знакомое с первого класса правило, однако, при решении больших примеров оно моментально забывается!

Не забывай про него - используй группировку , чтобы облегчить себе процесс подсчета и снизить вероятность ошибок, ведь на ЕГЭ калькулятора у тебя не будет.

Смотри сам, какое выражение легче сложить?

  • 4 + 5 + 3 + 6
  • 4 + 6 + 5 + 3

​​Конечно же второе! Хотя результат один и тот же. Но! считая вторым способом у тебя меньше шансов ошибиться и ты все сделаешь быстрее!

Итак, ты в уме считаешь вот так:

4 + 5 + 3 + 6 = 4 + 6 + 5 + 3 = 10 + 5 + 3 = 18

Вычитание. Группировка при вычитании, чтобы быстрее считать и меньше ошибаться

При вычитании мы также можем группировать вычитаемые числа, например:

32 - 5 - 2 - 6 = (32 - 2) - 5 - 6 = 30 - 5 - 6 = 19

А что, если вычитание чередуется в примере со сложением? Так же можно группировать, ответишь ты, и это правильно. Только прошу, не забывай о знаках перед числами, например: 32 - 5 - 2 - 6 = (32 - 2) - (6 + 5) = 30 - 11 = 19

Помни: неправильно проставленные знаки приведут к ошибочному результату.

Умножение. Как умножать в уме

Очевидно, что от перемены мест множителей значение произведения также не изменится:

2 ⋅ 4 ⋅ 6 ⋅ 5 = (2 ⋅ 5 ) (4 ⋅ 6 ) = 1 0 ⋅ 2 4 = 2 4 0

Я не буду говорить тебе «используй это при решении примеров» (ты и сам понял намек, правда?), а лучше расскажу, как быстро умножать некоторые числа в уме. Итак, внимательно смотри таблицу:

И еще немного об умножении. Конечно, ты помнишь два особых случая … Догадываешься о чем я? Вот об этом:

Ах да, еще рассмотрим признаки делимости . Всего существует 7 правил по признакам делимости, из которых первые 3 ты точно уже знаешь!

А вот остальные совсем не сложно запомнить.

7 признаков делимости чисел, которые помогут тебе быстро считать в уме!

  • Первые три правила ты, конечно же, знаешь.
  • Четвертое и пятое легко запомнить - при делении на и мы смотрим, делится ли на это сумма цифр, составляющих число.
  • При делении на мы обращаем внимание на две последние цифры числа - делится ли число, которое они составляют на?
  • При делении на число должно одновременно делиться на и на. Вот и вся премудрость.

Ты сейчас думаешь - «зачем мне все это»?

Во-первых, ЕГЭ проходит без калькулятора и данные правила помогут тебе сориентироваться в примерах.

А во-вторых, ты же слышал задачи про НОД и НОК ? Знакомая аббревиатура? Начнем вспоминать и разбираться.

Наибольший общий делитель (НОД) - нужен для сокращения дробей и быстрых вычислений

Допустим, у тебя есть два числа: и. На какое наибольшее число делятся оба этих числа? Ты, не задумываясь, ответишь, потому что знаешь, что:

12 = 4 * 3 = 2 * 2 * 3

8 = 4 * 2 = 2 * 2 * 2

Какие цифры в разложении общие? Правильно, 2 * 2 = 4. Вот и твой ответ был. Держа в голове этот простой пример, ты не забудешь алгоритм, как находить НОД . Попробуй «выстроить» его у себя в голове. Получилось?

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, 3, 7, 11, 13 и т.д.).
  2. Перемножить их.

Понимаешь, зачем нам нужны были признаки делимости? Чтобы ты посмотрел на число и мог начать делить без остатка.

Для примера найдем НОД чисел 290 и 485

Первое число - .

Глядя на него, ты сразу можешь сказать, что оно делится на, запишем:

больше разделить ни на что нельзя, а вот можно - и, получаем:

290 = 29 * 5 * 2

Возьмем еще одно число - 485.

По признакам делимости оно должно без остатка делиться на, так как на заканчивается. Делим:

Проанализируем изначальное число.

  • На оно делиться не может (последняя цифра - нечетная),
  • - не делится на, значит число тоже не делится на,
  • на и на также не делится (сумма цифр, входящих в число, не делится на и на)
  • на тоже не делится, так как не делится на и,
  • на тоже не делится, так как не делится на и.
  • нельзя разделить на нацело,

Значит, число можно разложить только на и.

А теперь найдем НОД этих чисел (и). Какое это число? Правильно, .

Потренируемся?

Задача №1. Найти НОД чисел 6240 и 6800

1) Делю сразу на, так как оба числа 100% делятся на:

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Отрицательные числа можно складывать, вычитать, умножать и делить - все как в натуральных. Казалось бы, что в них такого особенного? А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание». Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел ».

Отрицательные числа долго не признавались людьми. Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии. Как ты думаешь, с чем связано это признание? Правильно, отрицательными числами стали обозначать долги (иначе - недостачу). Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие. Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)). Далее европейцы пришли к тому, что отрицательные числа могут обозначать не только долги, но и нехватку чего бы то ни было, правда, признавали это не все.

Так, в XVII веке Паскаль считал что. Как думаешь, чем он это обосновывал? Верно, «ничто не может быть меньше НИЧЕГО». Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку - он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число. С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального. Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная. След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего». Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа). Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф. Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!