Показатель преломления воды и воздуха. Закон преломления света. Абсолютный и относительный показатели (коэффициенты) преломления. Полное внутреннее отражение

Лабораторная работа

Преломление света. Измерение показателя преломления жидкости

с помощью рефрактометра

Цель работы : углубление представлений о явлении преломления света; изучение методики измерения показателя преломления жидких сред; изучение принципа работы с рефрактометром.

Оборудование : рефрактометр, растворы поваренной соли, пипетка, мягкая ткань для протирания оптических деталей приборов.

Теория

Законы отражения и преломления света. Показатель преломления.

На границе раздела сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях проходит через границу раздела сред, меняя при этом, как правило, направление распространения. Это явление называется преломлением света (рис. 1).

Рис. 1. Отражение и преломление света на плоской границе раздела двух сред.

Направление отраженного и преломленного лучей при прохождении света через плоскую границу раздела двух прозрачных сред определяются законами отражения и преломления света.

Закон отражения света. Отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Угол падения равен углу отражения
.

Закон преломления света. Преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Отношение синуса угла паденияα к синусу угла преломленияβ есть величина постоянная для данных двух сред, называемая относительным показателем преломления второй среды по отношению к первой:

Относительный показатель преломления двух сред равен отношению скорости распространения света в первой средеv 1 к скорости света во второй средеv 2:

Если свет идет из вакуума в среду, то показатель преломления среды относительно вакуума называется абсолютным показателем преломления этой среды и равен отношению скорости света в вакууме с к скорости света в данной средеv:

Абсолютные показатели преломления всегда больше единицы; для воздуха n принят за единицу.

Относительный показатель преломления двух сред можно выразить через их абсолютные показатели n 1 иn 2 :

Определение показателя преломления жидкости

Для быстрого и удобного определения показателя преломления жидкостей существует специальные оптические приборы – рефрактометры, основной частью которых являются две призмы (рис. 2): вспомогательная Пр. 1 и измерительнаяПр.2. В зазор между призмами наливается исследуемая жидкость.

При измерениях показателей могут быть использованы два метода: метод скользящего луча (для прозрачных жидкостей) и метод полного внутреннего отражения (для темных, мутных и окрашенные растворов). В данной работе используется первый из них.

В методе скользящего луча свет от внешнего источника проходит сквозь грань призмы Пр.1, рассеивается на ее матовой поверхностиАС и далее через слой исследуемой жидкости проникает в призмуПр.2. Матовая поверхность становится источником лучей всех направлений, поэтому она может наблюдаться сквозь граньЕ F призмыПр.2. Однако граньАС можно наблюдать сквозьЕ F только под углом, большим некоторого предельного минимального углаi . Величина этого угла однозначно связана с показателем преломления жидкости, находящейся между призмами, что и случит основной идеей конструкции рефрактометра.

Рассмотрим прохождение света через грань ЕF нижней измерительной призмыПр.2. Как видно из рис. 2, применяя дважды закон преломления света, можно получить два соотношения:

(1)

(2)

Решая эту систему уравнений, нетрудно прийти к выводу, что показатель преломления жидкости

(3)

зависит от четырех величин: Q , r , r 1 и i . Однако не все они независимы. Так, например,

r + s = R , (4)

где R - преломляющий угол призмы Пр.2 . Кроме того, задав углу Q максимальное значение 90°, из уравнения (1) получим:

(5)

Но максимальному значению угла r , как это видно из рис. 2 и соотношений (3) и (4), соответствуют минимальные значения углов i и r 1 , т.е. i min и r min .

Таким образом, показатель преломления жидкости для случая «скользящих» лучей связан только с углом i . При этом существует минимальное значение угла i , когда грань АС еще наблюдается, т. е. в поле зрения она кажется зеркально белой. Для меньших углов наблюдения грань не видна, и в поле зрения это место кажется черным. Поскольку зрительная труба прибора захватывает сравнительно широкую угловую зону, то в поле зрения одновременно наблюдаются светлый и черный участки, граница между которыми соответствует минимальному углу наблюдения и однозначно связана с показателем преломления жидкости. Используя окончательную расчетную формулу:

(ее вывод опущен) и ряд жидкостей с известными показателями преломления, можно проградуировать прибор, т. е. установить однозначное соответствие между показателями преломления жидкостей и углами i min . Все приведенные формулы выведены для лучей одной какой-либо длины волны.

Свет различных длин волн будет преломляться с учетом дисперсии призмы. Таким образом, при освещении призмы белым светом граница раздела будет размыта и окрашена в различные цвета вследствие дисперсии. Поэтому в каждом рефрактометре есть компенсатор, который позволяет устранить результат дисперсии. Он может состоятьиз одной или двух призм прямого зрения - призм Амичи. Каждая призма Амичи состоит из трех стеклянных призм с различными показателями преломления и различной дисперсией, например, крайние призмы изготовлены из кронгласа, а средняя - из флинтгласа (кронглас и флинтглас - сорта стекол). Поворотом призмы компенсатора с помощью специального устройства добиваются резкого без окраски изображения границы раздела, положение которой соответствует значению показателя преломления для желтой линии натрияλ =5893 Å (призмы рассчитаны так, чтобы лучи с длиной волны 5893 Å не испытывали вних отклонения).

Лучи, прошедшие компенсатор, попадают в объектив зрительной трубы, далее через обращающую призму проходят через окуляр зрительной трубы в глаз наблюдателя. Схематический ход лучей показан на рис. 3.

Шкала рефрактометра отградуирована в значениях показателя преломления и концентрации раствора сахарозы в воде и расположена в фокальной плоскости окуляра.

Экспериментальная часть

Задание 1. Проверка рефрактометра.

Направьте свет с помощью зеркала на вспомогательную призму рефрактометра. Подняв вспомогательную призму, пипеткой нанесите несколько капель дистиллированной воды на измерительную призму. Опустив вспомогательную призму, добейтесь наилучшей осве­щенности поля зрения и установите окуляр на отчетливую видимость перекрестия и шкалы показателей преломления. Поворачивая камеру измерительной призмы, получите в поле зрения границу света и тени. Вращая головку компенсатора, добейтесь устранения окраски границы света и тени. Совместите границу света и тени с точкой перекрестия и измерьте показатель преломления воды n изм . Если рефрактометр исправен, то для дистиллированной воды должно получиться значениеn 0 = 1,333, если показания отличаются от этого значения, нужно определить поправку Δn = n изм - 1,333, которую затем следует учитывать при дальнейшей работе с рефрактометром. Поправки внесите в таблицу 1.

Таблица 1.

n 0

n изм

Δ n

Н 2 О

Задание 2. Определение показателя преломления жидкости.

    Определите показатели преломления растворов известных концентраций с учетом найденной поправки.

Таблица 2.

С, об. %

n изм

n ист

    Постройте график зависимости показателя преломления растворов поваренной соли от концентрации по полученным результатам. Сделайте вывод о ходе зависимости n от С; сделайте выводы о точности измерений на рефрактометре.

    Возьмите раствор соли неизвестной концентрации С x , определите его показатель преломления и по графику найдите концентрацию раствора.

    Уберите рабочее место, осторожно протрите призмы рефрактометров влажной чистой тряпочкой.

Контрольные вопросы

    Отражение и преломление света.

    Абсолютный и относительный показатели преломления среды.

    Принцип работы рефрактометра. Метод скользящего луча.

    Схематический ход лучей в призме. Для чего необходимы призмы компенсатора?

Распространение, отражение и преломление света

Природа света – электромагнитная. Одним из доказательств этого является совпадение величин скоростей электромагнитных волн и света в вакууме.

В однородной среде свет распространяется прямолинейно. Это утверждение называется законом прямолинейного распространения света. Опытным доказательством этого закона служат резкие тени, даваемые точечными источниками света.

Геометрическую линию, указывающую направление распространения света, называют световым лучом. В изотропной среде световые лучи направлены перпендикулярно волновому фронту.

Геометрическое место точек среды, колеблющихся в одинаковой фазе, называют волновой поверхностью, а множество точек, до которых дошло колебание к данному моменту времени, – фронтом волны. В зависимости от вида фронта волны различают плоские и сферические волны.

Для объяснения процесса распространения света используют общий принцип волновой теории о перемещении фронта волны в пространстве, предложенный голландским физиком Х.Гюйгенсом. Согласно принципу Гюйгенса каждая точка среды, до которой доходит световое возбуждение, является центром сферических вторичных волн, распространяющихся также со скоростью света. Поверхность, огибающая фронты этих вторичных волн, дает положение фронта действительно распространяющейся волны в этот момент времени.

Необходимо различать световые пучки и световые лучи. Световой пучок – это часть световой волны, переносящей световую энергию в заданном направлении. При замене светового пучка описывающим его световым лучом последний нужно брать совпадающим с осью достаточно узкого, но имеющего при этом конечную ширину (размеры поперечного сечения значительно больше длины волны), светового пучка.

Различают расходящиеся, сходящиеся и квазипараллельные световые пучки. Часто употребляют термины пучок световых лучей или просто световые лучи, понимая под этим совокупность световых лучей, описывающих реальный световой пучок.

Скорость света в вакууме c = 3 108 м/с является универсальной константой и не зависит от частоты. Впервые экспериментально скорость света была определена астрономическим методом датским ученым О.Рёмером. Более точно скорость света измерил А.Майкельсон.

В веществе скорость света меньше, чем в вакууме. Отношение скорости света в вакууме к его скорости в данной среде называют абсолютным показателем преломления среды:

где с – скорость света в вакууме, v – скорость света в данной среде. Абсолютные показатели преломления всех веществ больше единицы.

При распространении света в среде он поглощается и рассеивается, а на границе раздела сред – отражается и преломляется.

Закон отражения света: луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; угол отражения g равен углу падения a (рис. 1). Этот закон совпадает с законом отражения для волн любой природы и может быть получен как следствие принципа Гюйгенса.

Закон преломления света: падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления для данной частоты света есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой:

Экспериментально установленный закон преломления света объясняется на основании принципа Гюйгенса. Согласно волновым представлениям преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую, а физический смысл относительного показателя преломления – это отношение скорости распространения волн в первой среде v1 к скорости их распространения во второй среде

Для сред с абсолютными показателями преломления n1 и n2 относительный показатель преломления второй среды относительно первой равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

Та среда, которая обладает большим показателем преломления, называется оптически более плотной, скорость распространения света в ней меньше. Если свет переходит из оптически более плотной среды в оптически менее плотную, то при некотором угле падения a0 угол преломления должен стать равным p/2. Интенсивность преломленного луча в этом случае становится равной нулю. Свет, падающий на границу раздела двух сред, полностью отражается от нее.

Угол падения a0, при котором наступает полное внутреннее отражение света, называется предельным углом полного внутреннего отражения. При всех углах падения, равных и больших a0, происходит полное отражение света.

Величина предельного угла находится из соотношения Если n2 = 1 (вакуум), то

2 Показа́тель преломле́ния вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде. Также о показателе преломления говорят для любых других волн, например, звуковых

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации.

Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды

(надо при этом учитывать, что значения магнитной проницаемости и показателя абсолютной диэлектрической проницаемости для интересующего диапазона частот - например, оптического, могут очень сильно отличаться от статического значения этих величин).

Для измерения коэффициента преломления используют ручные и автоматические рефрактометры. При использовании рефрактометра для определения концентрации сахара в водном растворе прибор называют сахариметр.

Отношение синуса угла падения () луча к синусу угла преломления () при переходе луча из среды Aв средуBназывается относительным показателем преломления для этой пары сред.

Величина nесть относительный показатель преломления среды В по отношению к среде А, аn" = 1/nесть относительный показатель преломления среды А по отношению к среде В.

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на неё из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

Рис. 3. Принцип действия интерференционного рефрактометра. Луч света разделяют так, чтобы две его части прошли через кюветы длиной l, заполненные веществами с различными показателями преломления. На выходе из кювет лучи приобретают определённую разность хода и, будучи сведены вместе, дают на экране картину интерференционных максимумов и минимумов сkпорядками (схематически показана справа). Разность показателей преломленияDn=n2 –n1 =kl/2, гдеl- длина волны света.

Рефрактометрами называются приборы, служащие для измерения показателя преломления веществ. Принцип действия рефрактометра основан на явлении полного отражения. Если на границу раздела двух сред с показателями преломления и, из среды более оптически плотной падает рассеянный пучок света, то начиная с некоторого угла падения, лучи не входят во вторую среду, а полностью отражаются от границы раздела в первой среде. Этот угол называется предельным углом полного отражения. На рис.1 показано поведение лучей при падении в некоторую току этой поверхности. Луч идет под предельным углом. Из закона преломления можно определить: , (поскольку).

Величина предельного угла зависит от относительного показателя преломления двух сред. Если лучи, отраженные от поверхности, направить на собирающую линзу то в фокальной плоскости линзы можно видеть границу света и полутени, причем, положение этой границы зависит от величины предельного угла, а следовательно, и от показателя преломления. Изменение показателя преломления одной из сред влечет за собой изменение положения границы раздела. Граница раздела света и тени может служить индикатором при определении показателя преломления, что и используется в рефрактометрах. Этот метод определения показателя преломления называется методом полного отражения

Помимо метода полного отражения в рефрактометрах используется метод скользящего луча. В этом методе рассеянный пучок света попадает на границу из среды менее оптически плотной под всевозможными углами (рис. 2). Лучу скользящему по поверхности (), соответствует -- предельный угол преломления (луч на рис.2). Если на пути лучей (), преломленных на поверхности, поставить линзу, то в фокальной плоскости линзы мы также увидим резкую границу света и тени.

Рис. 2

Так как условия, определяющие величину предельного угла, в обоих методах одинаковы, то и положение границы раздела совпадает. Оба метода равноценны, но метод полного отражения позволяет измерять показателя преломления непрозрачных веществ

Ход лучей в треугольной призме

На рисунке 9 изображено сечение стеклянной призмы плоскостью,перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол jмежду этими гранями называют преломляющим углом призмы. Уголqотклонения луча зависит от преломляющего угла призмыj, показателя преломления п материала призмы и угла паденияa. Он может быть вычислен с помощью закона преломления (1.4).

В рефрактометре используется источник 3 белого света. Вследствие дисперсии при прохождении светом призм 1 и 2 граница света и тени оказывается окрашенной. Во избежание этого перед объективом зрительной трубы помещают компенсатор 4. Он состоит из двух одинаковых призм, каждая из которых склеена из трех призм, обладающих различным показателем преломления. Призмы подбирают так, чтобы монохроматический луч с длиной волны = 589,3 мкм. (длина волны желтой линии натрия) не испытывал после прохождения компенсатора отклонения. Лучи с другими длинами волн отклоняются призмами в различных направлениях. Перемещая призмы компенсатора с помощью специальной рукоятки, добиваются того, чтобы граница света и темноты стала возможно более чёткой.

Лучи света, пройдя компенсатор, попадают в объектив 6 зрительной трубы. Изображение границы раздела свет – тень рассматривается в окуляр 7 зрительной трубы. Одновременно в окуляр рассматривается шкала 8. Так как предельный угол преломления и предельный угол полного отражения зависят от показателя преломления жидкости, то на шкале рефрактометра сразу нанесены значения этого показателя преломления.

Оптическая система рефрактометра содержит также поворотную призму 5. Она позволяет расположить ось зрительной трубы перпендикулярно призмам 1 и 2, что делает наблюдение более удобным.

К ЛЕКЦИИ №24

«ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА»

РЕФРАКТОМЕТРИЯ.

Литература:

1. В.Д. Пономарёв «Аналитическая химия» 1983год 246-251

2. А.А. Ищенко «Аналитическая химия» 2004 год стр 181-184

РЕФРАКТОМЕТРИЯ.

Рефрактометрия является одним их самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время.

Рефрактометрия - метод, основанный на явлении преломления или рефракции т.е. изменении направления распространения света при переходе из одной среды в другую.

Преломление, так же как и поглощение света, является следствием взаимодействия его со средой. Слово рефрактометрия означает измерение преломления света, которое оценивается по величине показателя преломления.

Величина показателя преломления n зависит

1)от состава веществ и систем,

2) от того, в какой концентрации и какие молекулы встречает световой луч на своем пути, т.к. под действием света молекулы разных веществ поляризуются по-разному. Именно на этой зависимости и основан рефрактометрический метод.

Метод этот обладает целым рядом преимуществ, в результате чего он нашел широкое применение как в химических исследованиях, так и при контроле технологических процессов.

1)Измерение показатели преломления являются весьма простым процессом, который осуществляется точно и при минимальных затратах времени и количества вещества.

2) Обычно рефрактометры обеспечивают точность до 10% при определении показателя преломления света и содержания анализируемого вещества

Метод рефрактометрии применяют для контроля подлинности и чистоты, для идентификации индивидуальных веществ, для определения строения органических и неорганических соединений при изучении растворов. Рефрактометрия находит применение для определения состава двухкомпонентных растворов и для тройных систем.

Физические основы метода

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ.

Отклонение светового луча от первоначального направления при переходе его из одной среды в другую тем больше, чем больше разница в скоростях распространения света в двух



данных средах.

Рассмотрим преломление светового луча на границе каких-либо двух прозрачных сред I и II(См. Рис.). Условимся, что среда II обладает большей преломляющей способностью и, следовательно, n 1 и n 2 - показывает преломление соответствующих сред. Если среда I -это не вакуум и не воздух, то отношение sin угла падения светового луча к sin угла преломления даст величину относительного показателя преломления n отн. Величина n отн. может быть так же определена как отношение показателей преломления рассматриваемых сред.

n отн. = ----- = ---

Величина показателя преломления зависит от

1) природы веществ

Природу вещества в данном случае определяет степень деформируемости его молекул под действием света - степень поляризуемости. Чем интенсивней поляризуемость, тем сильнее преломление света.

2)длины волны падающего света

Измерение показателя преломления проводится при длине волны света 589,3 нм (линия D спектра натрия).

Зависимость показателя преломления от длины световой волны называется дисперсией. Чем меньше длина волны, тем значительнее преломление . Поэтому, лучи разных длин волн преломляются по-разному.

3)температуры , при которой проводится измерение. Обязательным условием определения показателя преломления является соблюдение температурного режима. Обычно определение выполняется при 20±0,3 0 С.

При повышении температуры величина показателя преломления уменьшается, при понижении - увеличивается .

Поправку на влияние температуры рассчитывают по следующей формуле:

n t =n 20 + (20-t) ·0,0002, где

n t – показатель преломления при данной температуре,

n 20 -показатель преломления при 20 0 С

Влияние температуры на значения показателей преломления газов и жидких тел связано с величинами их коэффициентов объемного расширения. Объем всех газов и жидких тел при нагревании увеличивается, плотность уменьшается и,следовательно, уменьшается показатель

Показатель преломления, измеренный при 20 0 С и длине волны света 589,3 нм, обозначается индексом n D 20

Зависимость показателя преломления гомогенной двухкомпонентной системы от ее состояния устанавливается экспериментально, путем определения показателя преломления для ряда стандартных систем(например,растворов), содержание компонентов в которых известно.

4)концентрации вещества в растворе.

Для многих водных растворов веществ показатели преломления при разных концентрациях и температурах надежно измерены, и в этих случаях можно пользоваться справочными рефрактометрическими таблицами . Практика показывает, что при содержании растворенного вещества, не превышающем 10-20%, наряду с графическим методом в очень многих случаях можно пользоваться линейным уравнением типа:

n=n о +FC,

n- показатель преломления раствора,

- показатель преломления чистого растворителя,

C - концентрация растворенного вещества,%

F -эмпирический коэффициент, величина которого найдена

путем определения коэффициентов преломления растворов известной концентрации.

РЕФРАКТОМЕТРЫ.

Рефрактометрами называют приборы, служащие для измерения величины показателя преломления. Существует 2 вида этих приборов: рефрактометр типа Аббе и типа Пульфриха. И в тех и в др. измерения основаны на определении величины предельного угла преломления. На практике применяются рефрактометры различных систем: лабораторный-РЛ, универсальный РЛУ и др.

Показатель преломления дистиллированной воды n 0 =1,33299, практически же этот показатель принимает в качестве отсчетного как n 0 =1,333.

Принцип работы на рефрактометрах основан на определении показателя преломления методом предельного угла (угол полного отражения света).

Ручной рефрактометр

Рефрактометр Аббе

ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ (преломления коэффициент) - оптич. характеристика среды, связанная с преломлением света на границе раздела двух прозрачных оптически однородных и изотропных сред при переходе его из одной среды в другую и обусловленная различием фазовых скоростей распространения света и в средах. Величина П. п., равная отношению этих скоростейназ. относительным

П. п. этих сред. Если свет падает на вторую пли первую среду из (где скорость распространения света с) , то величинынназ. абсолютными П. п. данных сред. При этом а закон преломления может быть записан в виде где и- углы падения и преломления.

Величина абсолютного П. п. зависит от природы и строения вещества, его агрегатного состояния, темп-ры, давления и др. При больших интенсивностях П. п. зависит от интенсивности света (см. Нелинейная оптика) . У ряда веществ П. п. изменяется под действием внеш. электрич. поля (Керра эффект - в жидкостях и газах; электрооптич. Поккельса эффект - в кристаллах).

Для данной среды П. п. зависит от длины волны света l, причём в области полос поглощения эта зависимость носит аномальный характер (см. Дисперсия света ).В рентг. области П. п. практически для всех сред близок к 1, в видимой области для жидкостей и твёрдых тел - порядка 1,5; в ИК-области для ряда прозрачных сред 4,0 (для Ge).

Характеризуются двумя П. п.: обыкновенным (аналогично изотропным средам) и - необыкновенным, величина к-рого зависит от угла падения луча и, следовательно, направления распространения света в среде (см. Кристаллооптика ).Для сред, обладающих поглощением (в частности, для металлов), П. п. является комплексной величиной и может быть представлен в виде где га - обычный П. п., - показатель поглощения (см. Поглощение света, Металлооптика) .

П. п. является макроскопич. характеристикой среды и связан с её диэлектрической проницаемостью н магн. проницаемостью Классич. электронная теория (см. Дисперсия света )позволяет связать величину П. п. с микроскопич. характеристиками среды - электронной поляризуемостью атома (или молекулы) зависящей от природы атомов и частоты света, и среды: где N - число атомов в единице объёма. Действующее на атом (молекулу) электрич. полесветовой волны вызывает смещение оптич. электрона из положения равновесия; атом приобретает индуциров. дипольный момент изменяющийся во времени с частотой падающего света, и является источником вторичных когерентных волн, к-рые. интерферируя с падающей на среду волной, образуют результирующую световую волну, распространяющуюся в среде с фазовой скоростьюи потому

Интенсивность обычных (не лазерных) источников света относительно невелика, напряжённость электрич. полясветовой волны, действующего на атом, много меньше внутриатомных электрич. полей, и электрон в атоме можно рассматривать как гармонич. осциллятор. В этом приближении величина и П. п.

Являются величинами постоянными (на данной частоте), не зависящими от интенсивности света. В интенсивных световых потоках, создаваемых мощными лазерами, величина электрич. поля световой волны может быть соизмерима с внутриатомными элект-рич. полями и модель гармония, осциллятора оказывается неприемлемой. Учёт ангармоничности сил в системе электрон - атом приводит к зависимости поляризуемости атомаа следовательно и П. п., от интенсивности света. Связь межу иоказывается нелинейной; П. п. может быть представлен в виде

Где - П. п. при малых интенсивностях света; (обычно принятое обозначение) - нелинейная добавка к П. п., или коэф. нелинейности. П. п. зависит от природы среды, напр. для силикатных стёкол

На П. п. влияет высокая интенсивность ещё и в результате эффекта электрострикции , изменяющего плотность среды, высокочастотного для анизотропных молекул (в жидкости), а также в результате повышения темп-ры, вызванного поглощением

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

Обратимся к более подробному рассмотрению показателя преломления, введенного нами в §81 при формулировке закона преломления.

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

Рис. 184. Относительный показатель преломления двух сред:

Пусть абсолютный показатель преломления первой среды есть а второй среды - . Рассматривая преломление на границе первой и второй сред, убедимся, что показатель преломления при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

(рис. 184). Наоборот, при переходе из второй среды в первую имеем относительный показатель преломления

Установленная связь между относительным показателем преломления двух сред и их абсолютными показателями преломления могла бы быть выведена и теоретическим путем, без новых опытов, подобно тому, как это можно сделать для закона обратимости (§82),

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой

Таблица 6. Показатель преломления различных веществ относительно воздуха

Жидкости

Твердые вещества

Вещество

Вещество

Спирт этиловый

Сероуглерод

Глицерин

Стекло (легкий крон)

Жидкий водород

Стекло (тяжелый флинт)

Жидкий гелий

Показатель преломления зависит от длины волны света, т. е. от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике. Мы неоднократно будем иметь дело с этим явлением в последующих главах. Данные, приведенные в табл. 6, относятся к желтому свету.

Интересно отметить, что закон отражения может быть формально записан в том же виде, что и закон преломления. Вспомним, что мы условились всегда измерять углы от перпендикуляра к соответствующему лучу. Следовательно, мы должны считать угол падения и угол отражения имеющими противоположные знаки, т.е. закон отражения можно записать в виде

Сравнивая (83.4) с законом преломления, мы видим, что закон отражения можно рассматривать как частный случай закона преломления при . Это формальное сходство законов отражения и преломления приносит большую пользу при решении практических задач.

В предыдущем изложении показатель преломления имел смысл константы среды, не зависящей от интенсивности проходящего через нее света. Такое истолкование показателя преломления вполне естественно, однако в случае больших интенсивностей излучения, достижимых при использовании современных лазеров, оно не оправдывается. Свойства среды, через которую проходит сильное световое излучение, в этом случае зависят от его интенсивности. Как говорят, среда становится нелинейной. Нелинейность среды проявляется, в частности, в том, что световая волна большой интенсивности изменяет показатель преломления. Зависимость показателя преломления от интенсивности излучения имеет вид

Здесь - обычный показатель преломления, а - нелинейный показатель преломления, - множитель пропорциональности. Добавочный член в этой формуле может быть как положительным, так и отрицательным.

Относительные изменения показателя преломления сравнительно невелики. При нелинейный показатель преломления . Однако даже такие небольшие изменения показателя преломления ощутимы: они проявляются в своеобразном явлении самофокусировки света.

Рассмотрим среду с положительным нелинейным показателем преломления. В этом случае области повышенной интенсивности света являются одновременной областями увеличенного показателя преломления. Обычно в реальном лазерном излучении распределение интенсивности по сечению пучка лучей неоднородно: интенсивность максимальна по оси и плавно спадает к краям пучка, как это показано на рис. 185 сплошными кривыми. Подобное распределение описывает также изменение показателя преломления по сечению кюветы с нелинейной средой, вдоль оси которой распространяется лазерный луч. Показатель преломления, наибольший по оси кюветы, плавно спадает к ее стенкам (штриховые кривые на рис. 185).

Пучок лучей, выходящий из лазера параллельно оси, попадая в среду с переменным показателем преломления , отклоняется в ту сторону, где больше. Поэтому повышенная интенсивность вблизи осп кюветы приводит к концентрации световых лучей в этой области, показанной схематически в сечениях и на рис. 185, а это приводит к дальнейшему возрастанию . В конечном итоге эффективное сечение светового пучка, проходящего через нелинейную среду, существенно уменьшается. Свет проходит как бы по узкому каналу с повышенным показателем преломления. Таким образом, лазерный пучок лучей сужается, нелинейная среда под действием интенсивного излучения действует как собирающая линза. Это явление носит название самофокусировки. Его можно наблюдать, например, в жидком нитробензоле.

Рис. 185. Распределение интенсивности излучения и показателя преломления по сечению лазерного пучка лучей на входе в кювету (а), вблизи входного торца (), в середине (), вблизи выходного торца кюветы ()