Значит цветовая температура. Какой свет лучше: желтый или белый? Цветовая температура освещения

А вы знали, что цвет в фотографии во многом зависит от того, какой характер освещения использовался при съемке конкретного сюжета? Иными, словами, на цветопередачу сильно влияет цветовая температура источника освещения, а также выставленный баланс белого в момент съемки или при обработке в графическом редакторе.

Цветовая температура света – это характеристика, определяющая цветовую тональность, присущую конкретному источнику освещения. Так, по цветовой температуре обычно различают холодный, теплый и нейтральный свет. Для измерения этой характеристики света существует специально разработанная шкала, где за единицу измерения приняты тысячи Кельвинов (К).

Сгруппируем основные источники освещения на три большие группы согласно их цветовой температуре :

1. Теплый свет , которому соответствует низкое значение цветовой температуры в Кельвинах (1500 К – 3500 К):

— пламя свечи – 1800-2000 К


— лампы накаливания (60-100 Вт) – 2600-2800 К- солнечный свет в режимное время (закат или восход) – 3300-3500 К2. Нейтральный свет , которому соответствуют средние значения цветовой температуры в Кельвинах (4500-6500 К)- дневной свет в ясную погоду (4500 – 5000 К)

— дневной свет в полдень, когда на небе появились кучевые облака (5500 К)

— вспышка (5500-5600 К)


3. Холодный свет
, которому соответствуют высокие значения цветовой температуры в Кельвинах (6500-20000 К)

— дневной свет в пасмурный день, высокая облачность (6500К-7500К)

— сумерки (7500К-8500К)

— ясное голубое небо зимой – 15000К

Чтобы адекватно отображать цвета на фотографии, необходимо выставить такой важный параметр съемки как баланс белого . В цифровой фотографии именно этот параметр отвечает за цветопередачу изображения.

При помощи баланса белого определяется соответствие цветовой гаммы полученного изображения (фотографии) реальной цветовой гамме объекта съемки в момент получения снимка. Установка определенного значения баланса белого – один из методов цветокоррекции цифровой фотографии.

При выставлении значения цветовой температуры (регулировке баланса белого) можно либо отдать предпочтение реалистичности цветопередачи (приоритет – соответствие цветов изображения натуральным цветам), либо субъективно подбирать баланс белого , при котором снимок выглядит максимально привлекательно. Так, первый метод выставления баланса белого обычно используется в репортажной съемке, а второй – в художественной фотографии.

Существует несколько способов выставления баланса белого для достижения нормальной цветопередачи:

1. Выставление баланса белого в настройках фотоаппарата перед началом съемки. Возможен выбор из предустановленных настроек камеры (дневной свет, вспышка, лампа накаливания и проч.) или же ручной ввод конкретного значения цветовой температуры в Кельвинах.

2. Корректировка баланса белого в графическом редакторе. При таком способе максимальной точности можно достичь только при , т.е. при получении необработанной информации об изображении. Так, например, при корректировке баланса белого в программе Adobe Lightroom при работе с , баланс белого можно изменять без потери качества картинки и без искажения снимка.

3. Выставление баланса белого по нейтрально-серой карте. Этот способ считается наиболее точным, так как позволяет достоверно идентифицировать нейтрально-серый цвет на изображении. Метод заключается в следующем: перед съемкой рядом с главным объектом устанавливается нейтрально-серая карта и делается тестовый снимок. Затем проводится съемка, а при цветокоррекции в графическом редакторе (например, лайтруме) баланс белого выставляется по серой карте на первом снимке (ее изображение принимается за нейтрально-серый цвет, а все остальные цвета корректируются под эти настройки). Затем полученные настройки баланса белого переносятся на все снимки из серии. Обращаю внимание, что снимки должны быть сделаны в формате RAW. Также некоторые камеры позволяют перед съемкой выполнить регулировку баланса белого по серой карте прямо в настройках самого фотоаппарата.

А теперь практический совет:

Если вы снимаете в формате RAW, то можете не задумываться насчет правильности предустановленного баланса белого в вашем фотоаппарате. Его всегда можно скорректировать или изменить при обработке фотографии на компьютере. Предварительные настройки баланса белого в этом случае нужны больше для адекватного представления изображения на экране фотоаппарата в режиме предпросмотра.

Если вы снимаете в формате JPG, следите за правильностью выставленного значения баланса белого. Потому что фотографии, сжатые в формат JPG не поддаются такой глубокой обработке, как RAW-файлы. Также следите за настройками баланса белого при изменении условий освещения в течение съемочного дня. Меняйте настройки баланса белого при изменении места съемки (на улице или в помещении), при изменении характера освещения (яркий день или закатное солнце), при включении или отключении вспышки.

Оставляйте ваши комментарии внизу записи. Хороших вам снимков!

Научно доказано, что определённые параметры освещения в помещении влияют на его восприятие человеком. Потому правильный выбор и расположение источников света очень важно в дизайне интерьера. Но иногда покупатели не понимают, в чём различие ламп, например, на 2500 и 4000 кельвинов. Какой цвет у этих температур и их роль в создании настроения можно понять, ознакомившись с таблицами в интернете или подробнее изучив вопрос самостоятельно.

Характеристика величины

С точки зрения физики, цветовая температура - это параметр любого источника света , характеризующий интенсивность его излучения. Он определяется длиной волны в функциональном оптическом диапазоне. От значения этого параметра зависит восприятие человеческим глазом цвета предметов, попавших под источник освещения.

Другое определение цветовой температуры (в научных кругах её называют также спектрофотометрической или колориметрической) - это величина в градусах Кельвина, до которой необходимо разогреть абсолютно чёрное тело, чтобы его оттенок совпал с соответствующим цветом на графике. Она характеризует спектральный состав излучения, а также помогает оценить восприятие человеком освещаемых предметов с объективной точки зрения, не полагаясь на его личные впечатления. Поэтому именно световая температура используется для установки стандартов и составления рекомендаций для установки ламп и других искусственных источников освещения в рабочих и жилых помещениях, производственных зонах и на улице.

Измеряют температуру цвета в кельвинах (K). Когда нужно уловить небольшие колебания этой величины, например, при фотографии, их заменяют на обратные микроградусы - миреды или майреды (M). Их значение равно одному миллиону, разделённому на количество K. В физических исчислениях колориметрическая температура обозначается как Тс.

Оттенки температуры

Наблюдать за сменой температуры свечения можно на практике, например, постепенно раскаляя кусок метала. Сначала он приобретёт красный оттенок, затем постепенно раскалиться добела - промежуточные оттенки между этими значениями будут отражать рост не только обычной, но и цветовой температуры. Другой иллюстрацией служит пламя свечи - красно-оранжевое пламя у её основания наиболее холодное, а желтовато-белое - горячее. Таблица спектрофотометрической температуры у разных объектов, встречающихся в повседневной жизни, выглядит так:

Температура в 0 K соответствует абсолютно чёрному телу. Стоит отметить, что цветовая и фактическая температура ламп сильно отличаются - это лишь условная величина, определяющая теплоту или холодность освещения. В целом, для простоты систематизации её делят на такие спектры:

Стоит отметить, что традиционно холодные цвета соответствуют самой высокой температуре света. С её увеличением они постепенно переходят от светло-голубого в тёмные оттенки синего. Начиная от значений в 18000 К появляются фиолетовые оттенки, но источники света с такими параметрами встречаются редко.

Особенности восприятия

Восприятие цвета у каждого человека разное - особенно сильно это относится к оттенкам. Оно зависит не только от колориметрической температуры, но и от других параметров освещения, а также от индивидуальных особенностей обработки поступающего сигнала нервной системой. Чтобы создать в помещении нужную обстановку при помощи источников света, необходимо учесть и правильно использовать все эти параметры.

Первый из них - это индекс цветопередачи. Он влияет на способность света передавать яркость, насыщенность и контрастность оттенков в помещении. У каждой лампы значение индекса указано на упаковке. Лучше всего, чтобы он составлял 80 или выше - так цвета буду выглядеть наиболее естественно. Разным лампам характерны такие параметры :

Улучшенный параметр цветопередачи увеличивает цену лампы, но для оформления жилых помещений средних значений будет достаточно. Влияет также мощность самой лампы - она должна быть достаточной, но не слишком высокой, чтобы не раздражать глаза.

Для объективного описания цвета освещения используют также параметр смещения, который характеризует его отклонение в сторону зелёного или пурпурного. Это часто используют в фотосъёмке для того, чтобы выбрать правильный фильтр при заданных параметрах. На качество света в помещениях смещение влияет мало.

Практическое использование

Вычисление цветовой температуры нужно во всех сферах, где вообще используется освещение. Каждый из спектров имеет свои особенности, преимущества и недостатки, которые используются для того, чтобы определённый источник света лучше всего выполнил свою функцию. Некоторые примеры использования источников света с разным значением параметра выглядят так:

Отдельное внимание стоит уделить использованию ламп с разным уровнем цветовой температуры при оформлении жилых помещений. Источники цвета разных оттенков используются для таких целей:

Согласно нормативам, источники света с колориметрической температурой более 5300 K не должны использоваться в жилых помещениях. Это связано с их вредным влиянием на глаза при слишком длительном нахождении в помещении. Так, лампа с температурой в 6500 кельвинов (свет, какой бывает на улице ясным летним днём) будет полезна при проведении недолгих процедур, требующих высокой концентрации внимания, но навредит, если будет установлена в спальню.

Выбор лампы

При выборе источника света в жилое помещение его температура цвета играет не последнюю роль. Перед приобретением лампы нужно определить роль и функции помещения, в котором она будет использоваться, а также то, сколько времени в нём проводит каждый из членов семьи. Стоит учесть и изначальную цветовую гамму комнаты, чтобы не получить неприятное для глаз сочетание.

На кухне, в ванной и коридорах рекомендуется использовать нейтральное освещение белого спектра со значением температуры около 4000 K. Это поможет не создавать лишней нагрузки на зрение, одновременно не мешая концентрации внимания, что поможет при выполнении повседневных задач, таких как наложение макияжа или приготовление пищи.

Для помещений, предназначенных для отдыха, нужно выбирать исключительно лампы с низкими (до 3500 K, лучше 2500-3000 K) значениями температуры цвета, обеспечивающими покой и отдых.

Для освещения детской комнаты лучше всего подойдёт лампа с температурой в 2700-3200 K. Она позволит создать комфортную обстановку для отдыха и ненапряженной игровой активности. Для ночников и настольных ламп ребёнку лучше подобрать осветительный прибор с чуть большим значением параметра - около 3500 K. Такой свет поможет сконцентрироваться в процессе письма или чтения, одновременно не добавляя лишней нагрузки на глаза.

Помимо температуры стоит учесть и другие параметры, такие как яркость, энергопотребление, индекс цветопередачи, мощность, срок службы и цену. Только подобрав подходящие значения по всем из них, можно правильно выбрать лампу для помещения в квартире или доме.

Введение………………………………………………………………………… 1. Понятие цветовой температуры…………………………………………….. 1.1. Таблица числовых значений цветовой температуры распространённых источников света……………………………………………………………….. 1.2. Диаграмма цветности XYZ………………………………………………….

1.3.Солнечный свет и Индекс Цветопередачи (CRI - colour rendering index)..

2. Методы измерения цветовой температуры………………………………...... Источники информации………………………………………………………….

Введение.

По нашим психологическим ощущениям цвета бывают тёплыми и горячими, бывают холодными и очень холодными. На самом деле все цвета горячие, очень горячие, ведь у каждого цвета есть своя температура и она очень высокая. Любой предмет в окружающем нас мире имеет температуру, выше абсолютного нуля, а значит, испускает тепловое излучение. Даже лед, у которого отрицательная температура, является источником теплового излучения. В это трудно поверить, но это так. В природе температура -89°С не самая низкая, можно достичь ещё более низких температур, правда, пока что, в лабораторных условиях. Самая низкая температура, которая на данный момент теоретически возможна в пределах нашей вселенной – это температура абсолютного нуля и она равна -273,15°С. При такой температуре прекращается движение молекул вещества и тела полностью перестают испускать любое излучение (тепловое, ультрафиолетовое, а уж тем более видимое). Полная тьма, нет ни жизни, ни тепла. Возможно, кто-нибудь из вас знает, что цветовая температура измеряется в Кельвинах. Кто покупал себе домой энергосберегающие лампочки, тот видел надпись на упаковке: 2700К или 3500К или 4500К. Это как раз и есть цветовая температура светового излучения лампочки. Но почему измеряется в Кельвинах, и что означает Кельвин? Эта единица измерения была предложена в 1848г. Ульямом Томсоном (он же лорд Кельвин) и официально утверждена в Международной Системе единиц. В физике и науках, имеющих непосредственное отношение к физике, термодинамическую температуру измеряют как раз Кельвинах. Начало отчета температурной шкалы начинается с точки 0Кельвин, что означат - 273,15 градуса Цельсия. То есть 0К – это и есть абсолютный нуль температуры. Можно легко перевести температуру из Цельсия в Кельвин. Для этого нужно просто прибавить число 273. Например, 0°С это 273К, тогда 1°С это 274К, по аналогии, температура тела человека 36,6°С это 36,6 + 273,15 = 309,75К. Вот так всё просто получается.

Глава 1. Понятие цветовой температуры.

Давайте попробуем разобраться, что такое цветовая температура.

Источниками света являются раскаленные до высоких температур тела, тепловые колебания атомов которых и вызывают излучение в виде электромагнитных волн различной длины. Излучение, в зависимости от длины волны, имеет свою цветность. При невысоких температурах и соответственно при более длинных волнах преобладает излучение с теплой, красноватой цветностью светового потока, а при более высоких, с уменьшением длины волны, с холодной, сине-голубой цветностью. Единицей длины волны является нанометр (нм), 1нм=1/1 000 000мм. Еще в 17 веке Исаак Ньютон при помощи призмы разложил так называемый белый дневной свет и получил спектр, состоящий из семи цветов: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового, а в результате различных опытов доказал, что любой спектральный цвет можно получить смешением световых потоков, состоящих из различных соотношений трех цветов - красного, зеленого и синего, которые и были названы основными. Так появилась теория трехкомпонентности.

Человеческий глаз воспринимает цветность света благодаря рецепторам, так называемым колбочкам, которые имеют три разновидности, каждая из которых воспринимает один из трех основных цветов - красный, зеленый или синий и имеет к каждому из них свою чувствительность. Человеческий глаз воспринимает электромагнитные волны в диапазоне от 780 до 380 нанометров. Это видимая часть спектра. Следовательно, и светоприемники носителей информации - кино и фотопленка или матрица камеры должны иметь идентичную глазу чувствительность к цвету. Сенсибилизированные пленки и матрицы видеокамер воспринимают электромагнитные волны в чуть более широком диапазоне, захватывая близлежащее к красной зоне инфракрасное излучение (ИК) в диапазоне 780-900 нм и близлежащее к фиолетовой - ультрафиолетовое (УФ) излучение в диапазоне 380-300 нанометров. Эта область спектра, в которой действует геометрическая оптика и светочувствительные материалы, называется оптическим диапазоном.

Человеческий глаз кроме световой и темновой адаптации обладает так называемой цветовой адаптацией, благодаря которой при различных источниках, с различными соотношениями длин волн основных цветов, правильно воспринимает цвета. Пленка же и матрица такими свойствами не обладают, они сбалансированы под определенную цветовую температуру.

Нагреваемое тело в зависимости от температуры нагрева в своем излучении имеет различное соотношение различных длин волн и соответственно различную цветность светового потока. Эталон, по которому определяется цветность излучения, есть абсолютно черное тело (АЧТ), т.н. излучатель Планка. Абсолютно черное тело - виртуальное тело, поглощающее 100% падающего на него светового излучения, описывается законами теплового излучения. А цветовая температура - это температура АЧТ в градусах Кельвина, при которой цветность его излучения совпадает с цветностью данного источника излучения. Разница между шкалой температуры в градусах Цельсия, где за ноль принята температура замерзания воды, и шкалой в градусах Кельвина составляет -273, 16, потому что точкой отсчета в шкале Кельвина взята температура, при которой в теле прекращается любое движение атомов и соответственно прекращается любое излучение, так называемый абсолютный ноль, соответствующий температуре по Цельсию -273,16 град. То есть 0 градусов по Кельвину соответствует температура -273,16 град. по Цельсию.

Основным естественным источником света для нас является Солнце и различные источники света - огонь в виде костра, спички, факела и осветительные приборы, начиная от бытовых приборов, приборов технического назначения и заканчивая профессиональными осветительными приборами, созданными специально для кинематографа и телевидения. И в бытовых приборах, и в профессиональных, используются различные лампы (не будем касаться их принципа действия и конструктивных различий) с различными энергетическими соотношениями в их спектрах излучения основных цветов, которые можно выразить величиной цветовой температуры. Все источники света разделены на две основные группы. Первые, с цветовой температурой (Тцв.)5600 0К, белого дневного света (ДС), в излучении которых преобладает коротковолновая, холодная часть оптического спектра, вторые - лампы накаливания (ЛН) с Тцв.- 32000К и преобладанием в излучении длинноволновой, теплой части оптического спектра.

С чего всё начинается? Всё начинается с нуля, в том числе и световое излучение. Черный цвет – это отсутствие света вовсе. С точки зрения цвета, черный – это 0 интенсивности излучения, 0 насыщенности, 0 цветового тона (его просто нет), это полное отсутствие всех цветов вообще. Почему мы видим предмет черным, а потому, что он почти полностью поглощает весь падающий на него свет. Существует такое понятие как абсолютно черное тело. Абсолютно черным телом называют идеализированный объект, который поглощает всё падающее на него излучение и ничего не отражающее. Конечно же, в реальности это недостижимо и абсолютно черных тел в природе не существует. Даже те предметы, которые кажутся нам черными, на самом деле не абсолютно черные. Но можно изготовить модель почти что абсолютно черного тела. Модель представляет собой куб с полой структурой внутри, в кубе проделано небольшое отверстие, через которое внутрь куба проникают световые лучи. Конструкция чем-то похожа на скворечник. Посмотрите на рисунок (1).

Рисунок (1). – Модель абсолютно черного тела.

Свет, попадающий внутрь сквозь отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Даже если мы покрасим куб в черный цвет, отверстие будет чернее черного куба. Это отверстие и будет являться абсолютно черным телом. В прямом смысле слова, отверстие не является телом, а только лишь наглядно демонстрирует нам абсолютно черное тело.

Все объекты обладают тепловым излучением (пока их температура выше абсолютного нуля, то есть -273,15 градусов по Цельсию), но ни один объект не является идеальным тепловым излучателем. Одни объекты излучают тепло лучше, другие хуже, и всё это в зависимости от различных условий среды. Поэтому, применяют модель абсолютно черного тела. Абсолютно черное тело является идеальным тепловым излучателем. Мы можем даже увидеть цвет абсолютно черного тела, если его нагреть, и цвет, который мы увидим, будет зависеть от того, до какой температуры мы нагреем абсолютно черное тело. Мы вплотную подошли к такому понятию как цветовая температура.

Посмотрите на рисунок (2).

Рисунок (2). – Цвет абсолютно черного тела в зависимости от температуры нагревания.

а) Есть абсолютно черное тело, мы его не видим вообще. Температура 0 Кельвин (-273,15 градуса Цельсия) – абсолютный нуль, полное отсутствие любого излучения.

б) Включаем «сверхмощное пламя» и начинаем нагревать наше абсолютно черное тело. Температура тела, посредством нагревания, повысилась до 273К.

в) Прошло ещё немного времени и мы уже видим слабое красное свечение абсолютно черного тела. Температура увеличилась до 800К (527°С).

г) Температура поднялась до 1300К (1027°С), тело приобрело ярко-красный цвет. Такой же цвет свечения вы можете увидеть при нагревании некоторых металлов.

д) Тело нагрелось до 2000К (1727°С), что соответствует оранжевому цвету свечения. Такой же цвет имеют раскаленные угли в костре, некоторые металлы при нагревании, пламя свечи.

е) Температура уже 2500К (2227°С). Свечение такой температуры приобретает желтый цвет. Трогать руками такое тело крайне опасно!

ж) Белый цвет – 5500К (5227°С), такой же цвет свечения у Солнца в полдень.

з) Голубой цвет свечения – 9000К (8727°С). Такую температуру путем нагреванием пламенем получить в реальности будет невозможно. Но такой порог температуры вполне достижим в термоядерных реакторах, атомных взрывах, а температура звезд во вселенной может достигать десятки и сотни тысяч Кельвин. Мы можем лишь увидеть такой же голубой оттенок света, например, у светодиодных фонарей, небесных светил или других источников света. Цвет неба в ясную погоду примерно такого же цвета. Подводя итог ко всему вышесказанному, можно дать четкое определение цветовой температуры. Цветовая температура – это температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Проще говоря, температура 5000К – это цвет, который приобретает абсолютно черное тело при нагревании его до 5000К. Цветовая температура оранжевого цвета – 2000К, это означает, что абсолютно черное тело необходимо нагреть до температуры 2000К, чтобы оно приобрело оранжевый цвет свечения.

Но цвет свечения раскаленного тела не всегда соответствует его температуре. Если пламя газовой плиты на кухне сине-голубого цвета, это не значит, что температура пламени свыше 9000К (8727°С). Расплавленное железо в жидком состоянии имеет оранжево-желтый оттенок цвета, что в действительности соответствует его температуре, а это примерно 2000К (1727°С).

В качестве осветительных приборов широко используются светодиоды. Это удобные малогабаритные и экономичные источники света. Но, в отличие от ламп накаливания, светодиоды имеют разный оттенок белого света. Его называют «цветовая температура» и обозначают Тс.

Конструкция белых светодиодов

Это кристалл кремния с добавками, покрытый люминофором. При протекании через него электрического тока кристалл излучает ультрафиолетовый или синий свет, переизлучаемый люминофором. Итоговый оттенок свечения светодиодных ламп определяется видом добавок и составом люминофора.

На заметку. Освещение комнаты зависит не только от цвета свечения светодиодов, но и абажура светильника, защитного стекла и цвета обоев на стенах и потолке.

Что такое цветовая температура

Все тела при нагреве излучают свет: вначале инфракрасный, а затем видимый. По спектру этого излучения можно определить температуру тела. Она измеряется в Кельвинах (К).

Справка. Есть две шкалы измерения температур: Кельвина (°К) и Цельсия (°С). 0°К=-273°С.

И наоборот, каждому оттенку цвета излучения соответствует температура предмета. Поэтому оттенки белого цвета принято обозначать в Кельвинах, чтобы не придумывать определения типа «светло-жёлтый» или «белый с голубым отливом»:

  • 0°К – абсолютно чёрное тело, отсутствие любого излучения;
  • 800°К (527°С) – тёмно-красный цвет;
  • 1300°К (1027°С) – ярко-красный. Так светится нагретый металл;
  • 2000°К (1727°С) – оранжевый. Это цвет углей (не пламени) в камине;
  • 2700°К – тёплый белый цвет. Так светятся лампочки накаливания;
  • 4500°К – нейтральный белый. Цвет пасмурного дня;
  • 5000°К – белый. Такой оттенок имеет цвет солнечного полдня;
  • 6800°К – холодный белый. Освещение на восходе солнца;
  • 9000°К – голубой. Цвет термоядерной реакции.

Цветовая температура светильников

Кроме мощности, важным параметром является цветовая температура светодиодных ламп. От неё зависит комфортность нахождения в интерьере и восприятие яркости. По современным нормам Тс свечения светодиодных ламп делится на три группы.

Теплый свет

Это желтоватый цвет (2700-3500°К), освещение перед закатом. Такое свечение имеют привычные лампы накаливания.

Используется оно для дома, в жилых помещениях:

  • в кухне теплый свет придаст еде более привлекательный и аппетитный вид;
  • в ванной и гостиной такое освещение создаёт расслабляющий эффект;
  • в спальне белый тёплый свет позволяет уменьшить яркость ламп и настроится на крепкий сон;

В интерьере усиливают жёлтые и красные оттенки, а также ослабляют из-за недостатка в спектре холодных цветов сине-зелёные:

  • голубой приобретает зеленоватый оттенок;
  • синий «выцветает»;
  • тёмно-синий выглядит чёрным;
  • фиолетовый приобретает красноватый оттенок.

Поэтому при оформлении интерьера в синей или голубой цветовой гамме лучше применять источники нейтрального или холодного света.

Нейтральный, или естественный свет

Нейтральный свет (3500-5000°К) ближе всего к натуральному и не искажает цвет интерьера. Такие светильники используются в следующих местах:

  • в детских комнатах, где обеспечивают правильное восприятие цветов;
  • в прихожей и ванной перед зеркалом;
  • в кухне над рабочей поверхностью;
  • в торшере, прикроватном бра светильнике на письменном столе.

Холодный свет

Это цвет зимнего дня (холодный – 5000-6800°К). Используется для создания рабочего настроения в офисах и на производстве, а также как дополнительное освещение вместе с солнечным светом. Холодный оттенок воспринимается ярче других цветов.

В жилых помещениях такое освещение используется во вспомогательных помещениях:

  • на кухне, для создания яркого освещения в рабочей зоне;
  • в кабинете для рабочей атмосферы;
  • в ванной возле умывальника поможет окончательно проснуться утром.

Внимание! В жилых комнатах такое освещение используется только при наличии большого пространства и в стиле Hi-Tech.

Цвета интерьера искажаются в обратную сторону от освещения тёплым светом: усиливаются синие и зелёные оттенки, но ослабляются красные и жёлтые:

  • красный приобретает фиолетовый оттенок;
  • оранжевый становится коричневым;
  • жёлтый выглядит жёлто-зелёным.

Поэтому в помещении, оформленном в тёплых тонах, такое освещение лучше не применять.

Индекс цветопередачи ламп CRI

На комфорт пребывания в помещении и производительность труда влияет не только яркость света, но и его оттенок. Не менее важным является соответствие воспринимаемого цвета реальному. Числовое обозначение этого параметра называется индекс или коэффициент цветопередачи. Обозначается он Rа или CRI, от англ. colour rendering index (коэффициент цветопередачи).

Эталонным является дневной свет. Его CRI равен 100. Производители осветительных приборов не стремятся добиться такого качества. Лампы с коэффициентом более 80 не утомляют глаза, а с Ra больше 90 – субъективно не отличаются от эталонных.

Интересно. Свет лампы накаливания мощностью 60Вт обладает температурой 2680К, а её CRI равен 80.

При определении Ra производится сравнение восьми эталонных цветов (DIN 6169) по методу Международной комиссии по освещению (CIE). При этом отмечается искажение цвета образцов при исследуемом освещении от цвета при эталонном освещении. Лампы с Тс до 5000К сравниваются с эталонным светильником, дающим спектр излучения чёрного тела, а для светильников с более высокой температурой эталоном является дневной свет.

Средняя величина отклонения вычитается из 100. Результат и есть индекс цветопередачи CRI.

Яркость ламп и цветовая температура

Светодиодные лампы позволяют выбрать освещение различного оттенка в разных помещениях. Но общее правило «в жилых помещениях тёплый белый, а в офисе – холодный» не всегда справедливо.

Физик из Голландии Ари Крюитоф исследовал восприятие освещения различной яркости и оттенков. Как оказалось, комфортность для глаз зависела от обоих факторов в одном и том же помещении.

По итогам экспериментов был составлен график, который носит название кривая Круитофа. На нём по горизонтали отмечена цветовая температура (K), по вертикали – освещённость (Lx). Пересечение этих величин показывает зоны приятного (посередине) и некомфортного освещения.

Например, холодный белый цвет ламп при освещённости 105 Lux воспринимается комфортным, но при уменьшении яркости кажется неприятным, с синеватым оттенком.

Такое освещение устанавливается в офисах, с нормой 400 Lux, а в жилых комнатах при обычной освещённости 75 Lux лучше использовать тёплый белый свет.

Внимание! При увеличении яркости света в жилых комнатах следует заменить светильники тёплого света нейтральными, иначе освещение будет неприятного жёлтого оттенка.

Разнообразная цветовая температура светодиодных ламп позволяет организовать освещение по своему вкусу, исходя из оформления интерьера и назначения помещения.

Видео

Цветовая температура светодиодных ламп – одна из главных величин, которая характеризует осветительную технику. Ее необходимо учитывать как при оформлении дизайна помещения, так и при выборе автомобильных ламп. Температура цвета – это обширное понятие, включающее в себя такие характеристики, как свойства спектра, цвет излучения, индекс передачи цвета и др.

Физическая трактовка цветовой температуры

Температура света была описана физиком Максом Планком. В этих трактатах были представлены законы распределения энергии. Вследствие этого появилось понятие температуры цвета. За единицу меры были приняты кельвины. Исходя из формулы, данный коэффициент равен температуре абсолютного черного тела, которое излучает свет в измеряемом масштабе цветов.

Измерение такой температуры во флуоресцентных лампах происходит посредством их сравнивания с абсолютным черным телом. Это твердое физическое тело, поглощающее при различной температуре падающее на него электромагнитное излучение во всех широтах. При изменении коэффициента, изменяются и параметры излучения. Так, нейтральный свет расположен посередине шкалы Кельвина.

Тела, имеющие различный химический состав и физические свойства, нагреваясь до необходимой температуры, производят разные излучения. В связи с этим применяется термин «коррелированная цветовая температура». Она равна температуре оттенка абсолютного черного тела, которое по цвету идентично рассматриваемому источнику света. Состав излучения и физическая температура являются разными.

Корреляция цветовой температуры

Во время увеличения температуры происходит накаливание. Если лампа находится в раскаленном состоянии, цвета на шкале цветовой температуры начинают поочередно меняться. Простые лампы накаливания имеют температуру цвета, равную 2700 К, в то время как их свечение и градусы расположены в теплом диапазоне спектра. Температура же светодиодных ламп не указывает на уровень их нагревания: при показателе в 2700 К лампа нагревается до +80°С.

Индекс цветопередачи CRI (Ra), именуемый еще коэффициентом цветопередачи, – это величина, которая характеризует степень соответствия естественного цвета предмета его видимому цвету при освещении его данным световым источником. Необходимость введения этого параметра связана с тем, что 2 разных вида ламп могут обладать одинаковой температурой цвета, при этом передавая оттенки по-разному.

Восприятие цветов

Цветовое восприятие каждого индивидуума имеет свои особенности. Перцепция цвета – это эффект от преломления световых волн, принятых зрительным нервом и обработанных мозговым зрительным центром. Каждый человек имеет собственное восприятие оттенков. Чем старше становится человек, тем больше искажается его цветовое восприятие. Особенности психики индивидуума также влияют на его цветовосприятие.

Восприятие того или иного цвета может быть искажено солнечным излучением. Теплота света также характеризуется индивидуальным восприятием и зависит от особенностей организма и состояния человека на момент восприятия.

Световые цвета

Нетрудно определить холодный объект, от которого не исходит излучение. Главными параметрами отражения света от подобного объекта выступают такие показатели, как длина и частота волны. Другая ситуация происходит с нагретым телом, излучающим свет. Теплота света будет напрямую зависеть от вида излучения. Это можно увидеть на примере вольфрамовой спирали в простой лампе накаливания. Очередность действий следующая:

  1. Включается свет, электроэнергия поступает на клеммы.
  2. Происходит постепенное снижение уровня сопротивления.
  3. Черное тело излучает красный свет.

Согласно принятым нормам, существует 3 вида световых цветов:

  • теплый белый свет;
  • нейтральный (естественный дневной);
  • холодный белый свет.

Цветовая температура и оттенки

Начало видимого диапазона испускания лучей достигает уровня 1200 К. При этом свечение имеет красноватый оттенок. При дальнейшем накаливании начинает происходить изменение цветовой гаммы. При отметке в 2000 К красный меняется на оранжевый, а затем переходит в желтый, достигнув уровня 3000 К. Для вольфрамовых спиралей наивысшая отметка – 3500 К.

Светодиодные светильники способны нагреваться до 5500 К и выше. При 5500 К они излучают яркий белый свет, при 6000 К – голубоватый, при 18000 К – пурпурный.

Температура влияет на восприятие цвета. Коэффициенты различных цветовых гамм существенно разнятся.

Таблица Кельвина, или таблица цветовой температуры, показывает градацию цветов и оттенков и дает четкое описание их применения.

Температура цвета Цвет Описание
2700 К Теплый белый, красно-белый Преобладает в простых лампах накаливания. Привносит в интерьер тепло и уют.
3000 К Теплый белый, желтовато-белый Присущ большинству галогенных ламп. Отличается более холодным оттенком, чем предыдущий цвет.
3500 К Белый Характерное освещение для флуоресцентных трубок разной ширины.
4000 К Холодный белый Чаще всего применяется в стиле хай-тэк.
5000-6000 К Естественный дневной Имитирует дневной свет. Применяется в зимних садах и террариумах.
6500 К Холодный дневной Широко применяется при фотосъемке и в кинематографе.

Чтобы правильно выбрать освещение, следует брать во внимание его предназначение. При подборе оптимального освещения нужно помнить, что его температура и яркость будут различными в зависимости от того, день на дворе, вечер или ночь.

Светодиодное освещение

Светодиодный светильник – один из наиболее популярных видов приборов для освещения.

Цветовая температура ламп накаливания светодиодов представлена такими оттенками:

  • теплый белый (Warm White) – до 3300 К;
  • натуральный белый (Natural White) – до 5000 К;
  • холодный белый (Cold White или Cool White) – более 5000 К.

Характеристики температуры диодов являются определяющим фактором при выборе сферы их использования. Они применяются для освещения улиц, подсветки рекламных щитов и осветительного оборудования для автомобиля.

К преимуществам холодного света можно отнести контрастность, благодаря которой он находит широкое применение в освещении затемненных территорий. Такие светодиодные лампы могут распространять свет на большие расстояния, поэтому их часто используют в освещении дорог.

Светодиоды, излучающие теплое свечение, используются в основном для освещения небольших территорий. Световой поток теплых и нейтральных тонов создает нужный эффект при пасмурной и дождливой погоде. Наличие атмосферных осадков оказывает влияние на излучение холодного света, в то время как теплый свет не претерпевает какого-либо существенного искажения при дождливой или снежной погоде.

Особенность теплого свечения светодиодных ламп заключается в том, что они позволяют четко увидеть как освещаемый предмет, так и окружающую его территорию. Благодаря такой специфике теплая гамма эффективно применяется при подводном освещении.

Цветопередача светодиодных ламп имеет свои особенности: холодные оттенки свечения неправильно передают цвета окружающих вещей. Такой свет создает резкость и яркость, что негативно отражается на зрении. Теплый цвет свечения более благотворно влияет на глаза.

Свечение энергосберегающих ламп характеризуется теплой цветовой гаммой. Они близки к естественным источникам света, благодаря этому их хорошо использовать, чтобы освещать жилища.

Ксеноновое освещение

Ксеноновые лампы отличаются между собой по техническим характеристикам, от которых зависит температура цвета. При производстве противотуманных фар используют только теплое желтое свечение. Бело-желтый свет отличается усиленной светоотдачей, не создает напряжения в глазах, его отчетливо видно на мокром асфальте. Достоинством его является то, что он не ослепляет своим светом водителей встречных автомобилей.

Стандартный белый цвет наиболее благоприятен для глаз. Благодаря своим свойствам он применим во многих сферах.

Белый цвет характеризуются тем, что его насыщенность колеблется в зависимости от вида оптического приспособления. Такая осветительная техника дает худшие показатели освещения при атмосферных осадках и тумане, однако при солнечной либо снежной погоде она является незаменимой.

Синий и сине-фиолетовый цвета используются в декоративных целях, так как они обладают низкими излучающими характеристиками.

В Европе были проведены исследования, согласно которым многие владельцы автомобилей предпочитают ксеноновые фары, имитирующие близкий к полуденному дневной свет.

Осветительные особенности необходимо рассматривать в их совокупности. Температура цвета имеет показатели яркости и контрастности, что отражается на степени комфорта восприятия света.

В зависимости от поставленных задач отдают предпочтение холодному, теплому либо нейтральному освещению. Каждый из этих видов освещения производит различный эффект и влияние на восприятие и настроение человека. Все эти нюансы необходимо учитывать при подборе осветительного оборудования.