Что особенного в числе Пи? Отвечает математик. История числа пи

(), а общепринятым оно стало после работ Эйлера . Это обозначение происходит от начальной буквы греческих слов περιφέρεια - окружность, периферия и περίμετρος - периметр.

Оценки

  • 510 знаков после запятой: π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…

Свойства

Соотношения

Известно много формул с числом π :

  • Формула Валлиса:
  • Тождество Эйлера :
  • Т. н. «интеграл Пуассона » или «интеграл Гаусса »

Трансцендентность и иррациональность

Нерешенные проблемы

  • Неизвестно, являются ли числа π и e алгебраически независимыми.
  • Неизвестно, являются ли числа π + e , π − e , πe , π / e , π e , π π , e e трансцендентными.
  • До сих пор ничего не известно о нормальности числа π ; неизвестно даже, какие из цифр 0-9 встречаются в десятичном представлении числа π бесконечное количество раз.

История вычисления

и Чудновского

Мнемонические правила

Чтобы нам не ошибаться, Надо правильно прочесть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Надо только постараться И запомнить всё как есть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Три, четырнадцать, пятнадцать, Девять, два, шесть, пять, три, пять. Чтоб наукой заниматься, Это каждый должен знать. Можно просто постараться И почаще повторять: «Три, четырнадцать, пятнадцать, Девять, двадцать шесть и пять.»

2. Подсчитайте количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания ) и запишите эти цифры подряд - не забывая про десятичную запятую после первой цифры «3», разумеется. Получится приближенное число Пи.

Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

Кто и шутя, и скоро пожелаетъ Пи узнать число - ужъ знаетъ!

Вот и Миша и Анюта прибежали Пи узнать число они желали.

(Вторая мнемоническая запись верна (с округлением последнего разряда) только при использовании дореформенной орфографии : при подсчете количества букв в словах необходимо учитывать твердые знаки!)

Еще один вариант этой мнемонической записи:

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду.

Раз у Коли и Арины Распороли мы перины. Белый пух летал, кружился, Куражился, замирал, Ублажился, Нам же дал Головную боль старух. Ух, опасен пуха дух!

Если соблюдать стихотворный размер, можно довольно быстро запомнить:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один

Забавные факты

Примечания

Смотреть что такое "Число пи" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

История числа Пи начинается еще с Древнего Египта и идет параллельно с развитием всей математики. Мы же впервые встречаемся с этой величиной в стенах школы.

Число Пи является, пожалуй, самым загадочным из бесконечного множества других. Ему посвящены стихи, его изображают художники, о нем даже снят фильм. В нашей статье мы рассмотрим историю развития и вычисления, а также области применения константы Пи в нашей жизни.

Число Пи – это математическая константа равная отношению длины окружности к длине ее диаметра. Первоначально оно называлось лудольфово числом, а обозначать его буквой Пи было предложено британским математиком Джонсом в 1706 году. После работ Леонарда Эйлера в 1737 году это обозначение стало общепринятым.

Число Пи является иррациональным, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n - целые числа. Впервые это доказал Иоганн Ламберт в 1761 году.

История развития числа Пи насчитывает уже порядка 4000 лет. Еще древнеегипетским и вавилонским математикам было известно, что отношение длины окружности к диаметру одинаково для любой окружности и значение его равно чуть больше трех.

Архимед предложил математический способ вычисления Пи, в котором он вписывал в окружность и описывал около неё правильные многоугольники. По его расчетам Пи примерно равнялась 22/7 ≈ 3,142857142857143.

Во II веке Чжан Хэн предложил два значения числа Пи: ≈ 3,1724 и ≈ 3,1622.

Индийские математики Ариабхата и Бхаскара нашли приблизительное значение 3,1416.

Самым точным приближением числа Пи на протяжении 900 лет было вычисление китайского математика Цзу Чунчжи, проведенное в 480-х годах. Он вывел, что Пи ≈ 355 / 113 , и показал, что 3,1415926 < Пи < 3,1415927.

До II тысячелетия было вычислено не более 10 цифр числа Пи. Лишь с развитием математического анализа, а особенно с открытием рядов, были осуществлены последующие крупные продвижения в вычислении константы.

В 1400-х годах Мадхава смог вычислить Пи=3,14159265359. Его рекорд удалось побить персидскому математику Аль-Каши в 1424 году. Он в своём труде «Трактат об окружности» привёл 17 цифр числа Пи, 16 из которых оказались верными.

Голландский математик Людольф ван Цейлен дошел в своих вычислениях до 20-ти чисел, отдав на это 10 лет жизни. После его смерти в его записях были обнаружены еще 15 цифр числа Пи. Он завещал, чтобы эти цифры были высечены на его надгробии.

С появлением компьютеров число Пи на сегодняшний день насчитывает несколько триллионов знаков и это не предел. Но, как подмечено в книге «Fractals for the Classroom», при всей важности числа Пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков».

В нашей жизни число Пи используется во многих научных областях. Физика, электроника, теория вероятностей, химия, строительство, навигация, фармакология - это лишь некоторые из них, которые просто невозможно представить себе без этого загадочного числа.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

По материалам сайта Calculator888.ru - Число Пи - значение, история, кто придумал .

Значение числа "Пи", как и его символика известна во всём мире. Этот термин обозначает иррациональные числа (то есть их значение не может быть точно выражено в виде дроби y/x, где y и x - целые числа) и заимствован и древнегреческого фразеологизма "перефериа", что можно перевести на русский, как "окружность".
Число "Пи" в математике обозначает отношение длины окружности к длине её диаметра. История происхождения числа "Пи" уходит в далёкое прошлое. Множество историков пытались установить, когда и кем был придуман этот символ, но выяснить так и не удалось.

Число "Пи" является трансцендентным числом, или говоря простыми словами оно не может быть корнем некоего многочлена с целыми коэффициентами. Оно может обозначаться, как вещественное либо, как косвенное число, которое не является алгебраическим.

Число "Пи" равняется 3,1415926535 8979323846 2643383279 5028841971 6939937510...


Число "Пи" может быть не только иррациональным числом, которое нельзя выразить с помощью нескольких различных чисел. Число "Пи" можно представить некоей десятичной дроби, которое располагает бесконечным множеством цифр после запятой. Ещё интересный момент - все эти числа не способны повторяться.

Число "Пи" можно соотнести с дробным числом 22/7, так называемым символом "тройной октавы ". Это число знали ещё древнегреческие жрецы. Кроме того, даже простые жители могли применять его для решения, каких-либо бытовых проблем, а также использовать для проектирования, таких сложнейших строений, как усыпальницы.
Как заявляет учёный и исследователь Хэйенс, подобное число можно проследить среди развалин Стоунхенджа, а также обнаружить в мексиканских пирамидах.

Число "Пи" упоминал в своих трудах Ахмес, известный в то время инженер. Он пытался наиболее точно рассчитать его используя для этого измерение диаметра круга по нарисованным внутри него квадратам. Вероятно в некотором смысле это число имеет некий мистический, сакральный для древних смысл.

Число "Пи" по сути является самым загадочным математическим символом. Его можно причислить к дельте, омеге и др. Оно представляет из себя такое отношение, которое окажется точно таким, независимо в кокой точке мироздания будет находиться наблюдатель. Кроме того, оно будет неизменным от объекта измерения.

Вероятнее всего, первым человеком, который решил вычислить число "Пи" с помощью математического метода является Архимед. Он решил он рисовал в окружности правильные многоугольники. Считая диаметр окружности единицей, учёный обозначал периметр нарисованного в круге многоугольника, рассматривая периметр вписанного многоугольника, как верхнюю оценку, а как нижнюю оценку длины окружности


Что такое число "Пи"

ЧИСЛО ПИ
Символ ПИ означает отношение длины окружности к ее диаметру. Впервые в этом смысле символ p был использован У. Джонсом в 1707, а Л. Эйлер, приняв это обозначение, ввел его в научный обиход. Еще в древности математикам было известно, что вычисление значения p и площади круга - задачи, тесно связанные между собой. Древние китайцы и древние евреи считали число p равным 3. Значение числа p, равное 3,1605, содержится в древнеегипетском папирусе писца Ахмеса (ок. 1650 до н. э.). Около 225 до н. э. Архимед, используя вписанный и описанный правильные 96-угольники, приближенно вычислил площадь круга с помощью метода, который привел к значению ПИ, заключенному между 31/7 и 310/71. Другое приближенное значение p, эквивалентное обычному десятичному представлению этого числа 3,1416, известно еще со 2 в. Л. ван Цейлен (1540-1610) вычислил значение ПИ с 32 десятичными знаками. К концу 17 в. новые методы математического анализа позволили вычислять значение p множеством различных способов. В 1593 Ф. Виет (1540-1603) вывел формулу

В 1665 Дж. Валлис (1616-1703) доказал, что


В 1658 У. Броункер нашел представление числа p в виде непрерывной дроби


Г.Лейбниц в 1673 опубликовал ряд


Ряды позволяют вычислять значение p с любым числом десятичных знаков. В последние годы с появлением электронных вычислительных машин значение p было найдено более чем с 10 000 знаков. С десятью знаками значение ПИ равно 3,1415926536. Как число, ПИ обладает некоторыми интересными свойствами. Например, его нельзя представить в виде отношения двух целых чисел или периодической десятичной дроби; число ПИ трансцендентно, т.е. непредставимо в виде корня алгебраического уравнения с рациональными коэффициентами. Число ПИ входит во многие математические, физические и технические формулы, в том числе и не имеющие непосредственного отношения к площади круга или длине дуги окружности. Например, площадь эллипса A определяется формулой A = pab, где a и b - длины большой и малой полуосей.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ЧИСЛО ПИ" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

    ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

    Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

Книги

  • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3)
  • Число имени. Новый взгляд на числа. Нумерология - путь познания (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια – окружность, периферия и περιµετρoς – периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) – угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} – arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 – 4(\frac{1}{3} + \frac{1}{5} – \frac{1}{7} + \frac{1}{9} – \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \frac{x^9}{9} – \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 – \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} – \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли – Боруэйна – Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} – \frac{2}{8k+4} – \frac{1}{8k+5} – \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n – 1} – \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} – 1} – \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. – История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. – М.: Эксмо, 2011. – 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи