Форменное зрение. Характеристика зрительных функций. Бинокулярное зрение у человека

ЗРЕНИЕ- процесс восприятия животным организмом предметов внешнего мира при помощи органа зрения - глаза. В основе этих восприятий лежит действие на глаз света, отражаемого или излучаемого предметами внешнего мира. Сущность зрения сводится к следующему: лучи света, идущие в глаз от предметов внешнего мира, пройдя через прозрачные среды глаза (роговую оболочку, хрусталик, стекловидное тело) и преломившись в них, падают на светочувствительную оболочку глаза - сетчатую оболочку, и вызывают в ее клетках - палочках и колбочках фотохимическую реакцию (распад в этих клетках светочувствительных веществ), в результате которой световая энергия превращается в нервное возбуждение. Это возбуждение в виде ритмических нервных импульсов передается из сетчатой оболочки по проводящим путям (зрительный нерв) в зрительные центры затылочной и других частей коры головного мозга, где световые раздражения воспринимаются в виде определенных образов. Колбочки являются элементами дневного зрения, палочки же - элементами сумеречного или ночного зрения. Такое двойственное зрение обеспечивает глазу огромную широту (диапазон) восприятия света - от едва мерцающего вдали до света, идущего от таких могучих его источников, как солнце. Вся сетчатая оболочка способна воспринимать форму предметов (форменное зрение). Однако это восприятие неодинаково на различных ее участках. Форменное зрение главным образом присуще той части сетчатой оболочки, которая находите» у заднего полюса глаза и называется «желтым пятном»; имеющейся в центре желтого пятна «центральной ямке», состоящей только из колбочек, присуще наивысшее форменное зрение - центральное зрение. Остальным периферическим частям сетчатой оболочки присуще менее четкое зрение, которое носит название периферического зрения. Поэтому всякий раз, когда необходимо получить точное и ясное изображение предметов внешнего мира, глаз устанавливается в таком положении, чтобы лучи света от этих предметов соединились бы в желтом пятне. Центральное зрение обеспечивает возможность рассматривать тонкие детали предметов, периферическое же - возможность ориентироваться в пространстве.

У различных людей, как известно, имеется различная острота зрения, что зависит как от свойств элементов желтого пятна, так и от ряда других причин. Остротой зрения называют способность глаза различать две точки при минимальном расстоянии между ними (или «минимальном угле» зрения). Для исследования остроты зрения служат специальные таблицы. Для того чтобы выяснить состояние периферического зрения, необходимого для ориентировки в пространстве, исследуется на специальном аппарате (периметре) поле зрения, то есть все то пространство, которое видно неподвижно стоящему глазу.

Орган зрения человека способен воспринимать также цвет предметов (о нарушениях цветоощущения см. ), различные яркости света (свето-ощущение), сливать изображения, получаемые па сетчатых оболочках обоих глаз, в одно изображение (см. [[Бинокулярное зрение]] ); наконец, будучи подвижным, глаз может охватывать значительные пространства (поле взора). Среди прочих органов чувств орган зрения, несомненно, является главнейшим органом познания внешнего мира; вооружая нас точными знаниями об окружающей природе, зрение увеличивает нашу власть над ней.

Общая характеристика зрения

■ Центральное зрение

Острота зрения

Цветоощущение

■ Периферийное зрение

Поле зрения

Светоощущение и адаптация

■ Бинокулярное зрение

ОБЩАЯ ХАРАКТЕРИСТИКА ЗРЕНИЯ

Зрение - сложный акт, направленный на получение информации о величине, форме и цвете окружающих предметов, а также их взаиморасположении и расстояниях между ними. До 90% сенсорной информации мозг получает благодаря зрению.

Зрение состоит из нескольких последовательных процессов.

Отраженные от окружающих предметов лучи света фокусируются оптической системой глаза на сетчатку.

Фоторецепторы сетчатки трансформируют световую энергию в нервный импульс благодаря вовлечению зрительных пигментов в фотохимические реакции. Зрительный пигмент, содержащийся в палочках, называют родопсином, в колбочках - йодопсином. Под воздействием света на родопсин входящие в его состав молекулы ретиналя (альдегида витамина A) подвергаются фотоизомеризации, вследствие чего и возникает нервный импульс. По мере расходования зрительные пигменты ресинтезируются.

Нервный импульс от сетчатки поступает по проводящим путям в корковые отделы зрительного анализатора. Головной мозг в результате синтеза изображений от обеих сетчаток создает идеальный образ увиденного.

Физиологический раздражитель для глаза - световое излучение (электромагнитные волны длиной 380-760 нм). Морфологическим субстратом зрительных функций служат фоторецепторы сетчатки: количество палочек в сетчатке составляет около 120 миллионов, а

колбочек - около 7 миллионов. Наиболее плотно колбочки расположены в центральной ямке макулярной области, в то время как палочек здесь нет. Дальше от центра плотность колбочек постепенно умень- шается. Плотность палочек максимальна в кольце вокруг фовеолы, по мере приближения к периферии их количество также уменьшается. Функциональные отличия палочек и колбочек следующие:

Палочки высокочувствительны к очень слабому свету, но не способны передавать ощущение цветности. Они отвечают за периферическое зрение (название обусловлено локализацией палочек), которое характеризуется полем зрения и светоощущением.

Колбочки функционируют при хорошем освещении и способны дифференцировать цвета. Они обеспечивают центральное зрение (название связано с их преимущественным расположением в центральной области сетчатки), которое характеризуется остротой зрения и цветоощущением.

Виды функциональной способности глаза

Дневное, или фотопическое, зрение (греч. photos - свет и opsis - зрение) обеспечивают колбочки при большой интенсивности освещения; характеризуется высокой остротой зрения и способностью глаза различать цвета (проявление центрального зрения).

Сумеречное, или мезопическое зрение (греч. mesos - средний, промежуточный) возникает при слабой степени освещенности и преимущественном раздражении палочек. Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов.

Ночное, или скотопическое зрение (греч. skotos - темнота) возникает при раздражении палочек пороговым и надпороговым уровнем света. При этом человек способен лишь различать свет и темноту.

Сумеречное и ночное зрение преимущественно обеспечивают палочки (проявление периферического зрения); оно служит для ори- ентации в пространстве.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Колбочки, расположенные в центральной части сетчатки, обеспечивают центральное форменное зрение и цветоощущение. Центральное форменное зрение - способность различать форму и детали рассматриваемого предмета благодаря остроте зрения.

Острота зрения

Острота зрения (visus) - способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные.

Минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки. Если изображения двух точек попадают на две соседние колбочки, то они сольются в короткую линию. Две точки будут восприниматься раздельно, если их изображения на сетчатке (две возбужденные колбочки) будут разделены одной невозбужденной колбочкой. Таким образом, диаметр колбочки определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем больше острота зрения (рис. 3.1).

Рис. 3.1. Схематическое изображение угла зрения

Угол, образованный крайними точками рассматриваемого предмета и узловой точкой глаза (находится у заднего полюса хрусталика), называют углом зрения. Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1 (1 угловой минуте).

В том случае, если глаз видит раздельно две точки, угол между которыми составляет не менее 1 , остроту зрения считают нормальной и определяют ее равной одной единице. Некоторые люди имеют остроту зрения 2 единицы и более.

С возрастом острота зрения меняется. Предметное зрение появляется в возрасте 2-3 мес. Острота зрения у детей в возрасте 4 мес составляет около 0,01. К году острота зрения достигает 0,1-0,3. Острота зрения, равная 1,0 формируется к 5-15 годам.

Определение остроты зрения

Для определения остроты зрения используют специальные таблицы, содержащие буквы, цифры или знаки (для детей используют рисунки - машинка, елочка и др.) различной величины. Эти знаки называют

оптотипами. В основу создания оптотипов положено международное соглашение о величине их деталей, составляющих угол в 1" , тогда как весь оптотип соответствует углу в 5 "с расстояния 5 м. (рис. 3.2).

Рис. 3.2. Принцип построения оптотипа Снеллена

У маленьких детей остроту зрения определяют ориентировочно, оценивая фиксацию ярких предметов различной величины. Начиная с трех лет остроту зрения у детей оценивают с помощью специальных таблиц.

В нашей стране наибольшее распространение получила таблица Головина-Сивцева (рис. 3.3), которую помещают в аппарат Рота - ящик с зеркальными стенками, обеспечивающий равномерное освещение таблицы. Таблица состоит из 12 строк.

Рис. 3.3. Таблица Головина-Сивцева: а) взрослая; б) детская

Пациент садится на расстоянии 5 м от таблицы. Исследование каждого глаза проводят отдельно. Второй глаз закрывают щитком. Сначала обследуют правый (ОD - oculusdexter), затем левый (OS - oculussinister) глаз. При одинаковой остроте зрения обоих глаз используют обозначение OU (oculiutriusque).

Знаки таблицы предъявляют в течение 2-3 с. Сначала показывают знаки из десятой строки. Если пациент их не видит, дальнейшее обследование проводят с первой строки, постепенно предъявляя знаки следующих строк (2-й, 3-й и т.д.). Остроту зрения характеризуют оптотипы наименьшего размера, которые исследуемый различает.

Для расчета остроты зрения используют формулу Снеллена: visus = d/D, где d - расстояние, с которого пациент читает данную строку таблицы, а D - расстояние, с которого читает данную строку человек с остротой зрения 1,0 (это расстояние указано слева от каждой строки).

Например, если обследуемый правым глазом с расстояния 5 м различает знаки второго ряда (D = 25 м), а левым глазом различает знаки пятого ряда (D = 10 м), то

visus OD = 5/25 = 0,2

visus OS = 5/10 = 0,5

Для удобства справа от каждой строки указана острота зрения, соответствующая чтению данных оптотипов с расстояния 5 м. Верхняя строка соответствует остроте зрения 0,1, каждая последующая - увеличению остроты зрения на 0,1, и десятая строка соответствует остроте зрения 1,0. В последних двух строках этот принцип нарушается: одиннадцатая строка соответствует остроте зрения 1,5, а двенадцатая - 2,0.

При остроте зрения менее 0,1 следует подвести пациента на расстояние (d), с которого он сможет назвать знаки верхней строки (D = 50 м). Затем остроту зрения также рассчитывают по формуле Снеллена.

Если пациент не различает знаки первой строки с расстояния 50 см (т.е. острота зрения ниже 0,01), то остроту зрения определяют по расстоянию, с которого он может сосчитать раздвинутые пальцы руки врача.

Пример: visus = счет пальцев с расстояния 15 см.

Самая низкая острота зрения - способность глаза отличать свет от темноты. В этом случае исследование проводят в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (perceptiolucis). В данном случае остроту зрения обозначают следующим образом: visus = 1/??:

Направляя на глаз пучок света с разных сторон (сверху, снизу, справа, слева), проверяют способность отдельных участков сетчатки воспринимать свет. Если обследуемый правильно определяет направление света, то острота зрения равна светоощущению с правильной проекцией света (visus = 1/?? proectio lucis certa, или visus = 1/?? p.l.c.);

Если обследуемый неправильно определяет направление света хотя бы с одной стороны, то острота зрения равна светоощущению с неправильной проекцией света (visus = 1/?? proectio lucis incerta, или visus = 1/??p.l.incerta).

В том случае когда больной не способен отличить свет от темноты, то его острота зрения равна нулю (visus = 0).

Острота зрения - важная зрительная функция для определения профессиональной пригодности и групп инвалидности. У маленьких детей или при проведении экспертизы для объективного определения остроты зрения используют фиксацию нистагмоидных движений глазного яблока, которые возникают при рассматривании движущихся объектов.

Цветоощущение

Острота зрения основывается на способности воспринимать ощущение белого цвета. Поэтому употребляемые для определения остроты зрения таблицы представляют изображение черных знаков на белом фоне. Однако не менее важная функция - способность видеть окружающий мир в цвете.

Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цве- товой спектр). В цветовом спектре принято выделять семь главных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый, из них приято выделять три основных цвета (красный, зеленый и фиолетовый), при смешении которых в разных пропорциях можно получить все остальные цвета.

Способность глаза воспринимать всю цветовую гамму только на основе трех основных цветов была открыта И. Ньютоном и М.М. Ломоносо-

вым. Т. Юнг предложил трехкомпонентную теорию цветового зрения, согласно которой сетчатка воспринимает цвета благодаря наличию в ней трех анатомических компонентов: одного - для восприятия красного цвета, другого - для зеленого и третьего - для фиолетового. Однако эта теория не могла объяснить, почему при выпадении одного из компонентов (красного, зеленого или фиолетового) страдает восприятие остальных цветов. Г. Гельмгольц развил теорию трехкомпонентного цветового

зрения. Он указал, что каждый компонент, будучи специфичен для одного цвета, вместе с тем раздражается и остальными цветами, но в меньшей степени, т.е. каждый цвет образуется всеми тремя ком- понентами. Цвет воспринимают колбочки. Нейрофизиологи подтвердили наличие в сетчатке трех типов колбочек (рис. 3.4). Каждый цвет характеризуется тремя качествами: тоном, насыщенностью и яркостью.

Тон - основной признак цвета, зависящий от длины волны светового излучения. Тон эквивалентен цвету.

Насыщенность цвета определяется долей основного тона среди примесей другого цвета.

Яркость или светлота определяется степенью близости к белому цвету (степень разведения белым цветом).

В соответствии с трехкомпонентной теорией цветового зрения восприятие всех трех цветов называется нормальной трихромазией, а люди, их воспринимающие, - нормальными трихроматами.

Рис. 3.4. Схема трехкомпонентного цветового зрения

Исследование цветового зрения

Для оценки цветоощущения применяют специальные таблицы (наиболее часто - полихроматические таблицы Е.Б. Рабкина) и спектральные приборы - аномалоскопы.

Исследование цветоощущения с помощью таблиц. При создании цветных таблиц используют принцип уравнивания яркости и насыщенности цвета. В предъявляемых тестах нанесены кружки основного и дополнительного цветов. Используя различную яркость и насыщенность основного цвета, составляют различные фигуры или цифры, которые легко различают нормальные трихроматы. Люди,

имеющие различные расстройства цветоощущения, не способны их различить. В то же время в тестах имеются таблицы, которые содержат скрытые фигуры, различаемые только лицами с нарушениями цветоощущения (рис. 3.5).

Методика исследования цветового зрения по полихроматическим таблицам Е.Б. Рабкина следующая. Обследуемый сидит спиной к источнику освещения (окну или лампам дневного света). Уровень освещенности должен быть в пределах 500-1000 лк. Таблицы предъявляют с расстояния 1 м, на уровне глаз исследуемого, располагая их вертикально. Длительность экспозиции каждого теста таблицы 3-5 с, но не более 10 с. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

Оценка результатов.

Все таблицы (27) основной серии названы правильно - у обследуемого нормальная трихромазия.

Неправильно названы таблицы в количестве от 1 до 12 - аномальная трихромазия.

Неправильно названы более 12 таблиц - дихромазия.

Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина.

Исследование цветоощущения с помощью аномалоскопов. Методика исследования цветового зрения с помощью спектральных приборов заключается в следующем: обследуемый сравнивает два поля, одно из которых постоянно освещают желтым цветом, другое - красным и зеленым. Смешивая красный и зеленый цвета, пациент должен получить желтый цвет, который по тону и яркости соответствует контролю.

Нарушение цветового зрения

Расстройства цветоощущения могут быть врожденными и приобретенными. Врожденные нарушения цветового зрения обычно двухсторонние, а приобретенные - односторонние. В отличие от

Рис. 3.5. Таблицы из набора полихроматических таблиц Рабкина

приобретенных, при врожденных расстройствах отсутствуют изменения других зрительных функций, и заболевание не прогрессирует. Приобретенные расстройства возникают при заболеваниях сетчат- ки, зрительного нерва и центральной нервной системы, в то время как врожденные обусловлены мутациями генов, кодирующих белки рецепторного аппарата колбочек. Виды нарушений цветового зрения.

Цветоаномалия, или аномальная трихромазия - аномальное восприятие цветов, составляет около 70% среди врожденных расстройств цветоощущения. Основные цвета в зависимости от порядка расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (protos), зеленый - второй (deuteros), синий - третий (tritos). Аномальное восприятие красного цвета называется протаномалией, зеленого - дейтераномалией, синего - тританомалией.

Дихромазия - восприятие только двух цветов. Различают три основных типа дихромазии:

Протанопия - выпадение восприятия красной части спектра;

Дейтеранопия - выпадение восприятия зеленой части спектра;

Тританопия - выпадение восприятия фиолетовой части спектра.

Монохромазия - восприятие только одного цвета, встречается исключительно редко и сочетается с низкой остротой зрения.

К приобретенным расстройствам цветоощущения относят также видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Цианопсия и эритропсия нередко развиваются после удаления хрусталика, ксантопсия и хлоропсия - при отравлениях и интоксикациях, в том числе лекарственными средствами.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ

Палочки и расположенные на периферии колбочки отвечают за периферическое зрение, которое характеризуется полем зрения и светоощущением.

Острота периферического зрения во много раз меньше, чем центрального, что связано с уменьшением плотности расположения колбочек по направлению к периферическим отделам сетчатки. Хотя

очертание предметов, воспринимаемое периферией сетчатки весьма неотчетливо, но и этого вполне достаточно для ориентации в пространстве. Периферическое зрение особенно восприимчиво к дви- жению, что позволяет быстро замечать и адекватно реагировать на возможную опасность.

Поле зрения

Поле зрения - пространство, видимое глазом при фиксированном взоре. Размеры поля зрения определяются границей оптически деятельной части сетчатки и выступающими частями лица: спинкой носа, верхним краем глазницы, щеками.

Исследование поля зрения

Существует три метода исследования поля зрения: ориентировочный способ, кампиметрия и периметрия.

Ориентировочный метод исследования поля зрения. Врач садится напротив пациента на расстоянии 50-60 см. Исследуемый закрывает ладонью левый глаз, а врач - свой правый глаз. Правым глазом пациент фиксирует находящийся против него левый глаз врача. Врач перемещает объект (пальцы свободной руки) от периферии к центру на середину расстояния между врачом и пациентом до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах. Затем аналогичным образом обследуют левый глаз.

При оценке результатов исследования необходимо учитывать, что эталоном служит поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения. Если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Исчезновение объекта в поле зрения больного на каком-то участке указывает на наличие скотомы.

Кампиметрия. Кампиметрия - метод исследования поля зрения на плоской поверхности с помощью специальных приборов (кампиметров). Кампиметрию применяют только для исследования участ- ков поля зрения в пределах до 30-40? от центра в целях определения величины слепого пятна, центральных и парацентральных скотом.

Для кампиметрии используют черную матовую доску или экран из черной материи размером 1x1 или 2x2 м. Расстояние от исследуе-

мого до экрана - 1 м, освещенность экрана - 75-300 лк. Используют белые объекты диаметром 1-5 мм, наклеенные на конец плоской черной палочки длиной 50-70 см.

При кампиметрии необходимы правильное положение головы (без наклона) на подставке для подбородка и точная фиксация пациентом метки в центре кампиметра; второй глаз больного закрывают. Врач постепенно передвигает объект по радиусам (начиная с горизонтального со стороны расположения слепого пятна) от наружной части кампиметра к центру. Пациент сообщает об исчезновении объекта. Более детальным исследованием соответствующего участка поля зрения определяют границы скотомы и отмечают результаты на специальной схеме. Размеры скотом, а также их расстояние от точки фиксации выражают в угловых градусах.

Периметрия. Периметрия - метод исследования поля зрения на вогнутой сферической поверхности с помощью специальных приборов (периметров), имеющих вид дуги или полусферы. Различают кинетическую периметрию (с движущимся объектом) и статическую периметрию (с неподвижным объектом переменной яркости). В настоящее

Рис. 3.6. Измерение поля зрения на периметре

время для проведения статической периметрии используют автоматические периметры (рис. 3.6).

Кинетическая периметрия. Широко распространен недорогой периметр Ферстера. Это дуга 180?, покрытая с внутренней стороны черной матовой краской и имеющая на наружной поверхности деления - от 0? в центре до 90? на периферии. Для определения наружных границ поля зрения используют белые объекты диаметром 5 мм, для выявления скотом - белые объекты диаметром 1 мм.

Исследуемый сидит спиной к окну (освещенность дуги периметра дневным светом должна быть не менее 160 лк), подбородок и лоб размещает на специальной подставке и фиксирует одним глазом белую метку в центре дуги. Второй глаз пациента закрывают. Объект ведут по дуге от периферии к центру со скоростью 2 см/с. Исследуемый сообщает о появлении объекта, а исследователь замечает, какому делению дуги соответствует в это время положение объекта. Это и будет наружная

граница поля зрения для данного радиуса. Определение наружных границ поля зрения проводят по 8 (через 45?) или по 12 (через 30?) радиусам. Необходимо в каждом меридиане проводить тест-объект до центра, чтобы убедиться в сохранности зрительных функций на всем протяжении поля зрения.

В норме средние границы поля зрения для белого цвета по 8 радиусам следующие: кнутри - 60?, сверху кнутри - 55?, сверху - 55?, сверху кнаружи - 70?, снаружи - 90?, снизу кнаружи - 90?, снизу - 65?, снизу кнутри - 50? (рис. 3.7).

Более информативна периметрия с использованием цветных объектов, так как изменения в цветном поле зрения развиваются раньше. Границей поля зрения для данного цвета считают то положение объекта, где испытуемый правильно распознал его цвет. Обычно используют синий, красный и зеленый цвета. Ближе всего к границам поля зрения на белый цвет оказывается синий, далее следует красный, а ближе к установочной точке - зеленый (рис. 3.7).

270

Рис. 3.7. Нормальные периферические границы поля зрения на белый и хроматические цвета

Статическая периметрия, в отличие от кинетической, позволяет выяснить также форму и степень дефекта поля зрения.

Изменения поля зрения

Изменения полей зрения происходят при патологических процессах в различных отделах зрительного анализатора. Выявление харак- терных особенностей дефектов поля зрения позволяет проводить топическую диагностику.

Односторонние изменения поля зрения (только в одном глазу на стороне поражения) обусловлены повреждением сетчатки или зрительного нерва.

Двусторонние изменения поля зрения выявляют при локализации патологического процесса в хиазме и выше.

Выделяют три вида изменений поля зрения:

Очаговые дефекты в поле зрения (скотомы);

Сужения периферических границ поля зрения;

Выпадение половин поля зрения (гемианопсии).

Скотома - очаговый дефект в поле зрения, не связанный с его периферическими границами. Скотомы классифицируют по характеру, интенсивности поражения, форме и локализации.

По интенсивности поражения выделяют абсолютные и относительные скотомы.

Абсолютная скотома - дефект, в пределах которого полностью выпадает зрительная функция.

Относительная скотома характеризуется понижением восприятия в области дефекта.

По характеру выделяют положительные, отрицательные, а также мерцательные скотомы.

Положительные скотомы больной замечает сам в виде серого или темного пятна. Такие скотомы указывают на поражение сетчатки и зрительного нерва.

Отрицательные скотомы больной не ощущает, они обнаруживаются только при объективном исследовании и указывают на повреждение вышележащих структур (хиазмы и далее).

По форме и локализации различают: центральные, парацентральные, кольцевидные и периферические скотомы (рис. 3.8).

Центральные и парацентральные скотомы возникают при заболеваниях макулярной области сетчатки, а также при ретробульбарных поражениях зрительного нерва.

Рис. 3.8. Различные виды абсолютных скотом: а - центральная абсолютная скотома; б - парацентральные и периферические абсолютные скотомы; в - кольцевидная скотома;

Кольцевидные скотомы представляют собой дефект в виде более или менее широкого кольца, окружающего центральный участок поля зрения. Они наиболее характерны для пигментной дистрофии сетчатки.

Периферические скотомы располагаются в различных местах поля зрения, кроме вышеперечисленных. Они возникают при очаговых изменениях в сетчатой и сосудистой оболочках.

По морфологическому субстрату выделяют физиологические и патологические скотомы.

Патологические скотомы появляются вследствие повреждения структур зрительного анализатора (сетчатки, зрительного нерва и т.д.).

Физиологические скотомы обусловлены особенностями строения внутренней оболочки глаза. К таким скотомам относят слепое пятно и ангиоскотомы.

Слепое пятно соответствует месту расположения диска зрительного нерва, область которого лишена фоторецепторов. В норме слепое пятно имеет вид овала, расположенного в височной половине поля зрения между 12? и 18?. Вертикальный размер слепого пятна равен 8-9?, горизонтальный - 5-6?. Обычно 1/3 слепого пятна расположена выше горизонтальной линии, проходящей через центр кампиметра, и 2 / 3 - ниже этой линии.

Субъективные расстройства зрения при скотомах различны и зависят, главным образом, от локализации дефектов. Очень малень-

кие абсолютные центральные скотомы могут сделать невозможным восприятие мелких объектов (например, букв при чтении), в то время как даже сравнительно большие периферические скотомы мало стесняют деятельность.

Сужение периферическихг раниц поля зрения обусловлено дефектами поля зрения, связанными с его границами (рис. 3.9). Выделяют равномерное и неравномерное сужения полей зрения.

Рис. 3.9. Виды концентрического сужения поля зрения: а) равномерное концентрическое сужение поля зрения; б) неравномерное концентрическое сужение поля зрения

Равномерное (концентрическое) сужение характеризуется более или менее одинаковой приближенностью границ поля зрения во всех меридианах к точке фиксации (рис. 3.9 а). В тяжелых случаях от всего поля зрения остается только центральный участок (трубочное, или тубулярное зрение). При этом становится затруднительной ориентировка в пространстве, несмотря на сохранность центрального зрения. Причины: пигментная дистрофия сетчатки, оптический неврит, атрофия и другие поражения зрительного нерва.

Неравномерное сужение поля зрения возникает при неодинаковом приближении границ поля зрения к точке фиксации (рис. 3.9 б). Например, при глаукоме сужение происходит преимущественно с внутренней стороны. Секторальные сужения поля зрения наблюдаются при непроходимостиветвей центральной артерии сетчатки, юкстапапиллярном хориоретините, некоторых атрофиях зрительного нерва, отслойке сетчатки и др.

Гемианопсия - двустороннее выпадение половины поля зрения. Гемианопсии делят на одноименные (гомонимные) и разноименные (гетеронимные). Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при объективном обследовании. Изменения полей зрения обоих глаз - важнейший симптом в топической диагностике заболеваний головного мозга (рис. 3.10).

Гомонимная гемианопсия - выпадение височной половины поля зрения в одном глазу и носовой - в другом. Она обусловлена ретрохиазмальным поражением зрительного пути на стороне, противоположной дефекту полей зрения. Характер гемианопсии изменяется в зависимости от уровня поражения: она может быть полной (при выпадении всей половины поля зрения) или частичной (квадрантной).

Полная гомонимная гемианопсия наблюдается при поражении одного из зрительных трактов: левосторонняя гемианопсия (выпадение левых половин полей зрения) - при повреждении правого зрительного тракта, правосторонняя - левого зрительного тракта.

Квадрантная гомонимная гемианопсия обусловлена повреждением головного мозга и проявляется выпадением одноименных квадрантов полей зрения. В случае поражения корковых отделов зрительного анализатора дефекты не захватывают центральный участок поля зрения, т.е. зону проекции желтого пятна. Это объясняется тем, что волокна от макулярной области сетчатки уходят в оба полушария головного мозга.

Гетеронимная гемианопсия характеризуется выпадением наружных или внутренних половин полей зрения и обусловлена поражением зрительного пути в области зрительного перекреста.

Рис. 3.10. Изменение поля зрения в зависимости от уровня поражения зрительного пути: а)локализация уровня поражения зрительного пути (обозначены цифрами); б) изменение поля зрения соответственно уровню поражения зрительного пути

Битемпоральная гемианопсия - выпадение наружных половин полей зрения. Развивается при локализации патологического очага в области средней части хиазмы (часто сопровождает опухоли гипофиза).

Биназальная гемианопсия - выпадение носовых половин полей зрения. Обусловлена двусторонним поражением неперекрещенных волокон зрительного пути в области хиазмы (например, при склерозе или аневризмах обеих внутренних сонных артерий).

Светоощущение и адаптация

Светоощущение - способность глаза воспринимать свет и определять различную степень его яркости. За светоощущение отвечают главным образом палочки, так как они гораздо более чувствительны к свету, чем колбочки. Светоощущение отражает функциональное состояние зрительного анализатора и характеризует возможность ориентации в условиях пониженного освещения; нарушение его - один из ранних симптомов многих заболеваний глаза.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение (порог светоощущения) и способность улавливать наименьшую разницу в яркости освеще- ния (порог различения). Порог светоощущения зависит от уровня предварительной освещенности: он меньше в темноте и увеличивается на свету.

Адаптация - изменение световой чувствительности глаза при колебаниях освещенности. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. Различают световую (при повышении уровня освещенности) и темновую адаптацию (при понижении уровня освещенности).

Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интенсивно световая адаптация протекает в течение первых секунд, окончательных значений порог светоощущения достигает к концу первой минуты.

Темновая адаптация происходит медленнее. Зрительные пигменты в условиях пониженного освещения расходуются мало, происходит их постепенное накопление, что повышает чувствительность сетчатки к стимулам пониженной яркости. Световая чувствительность фоторецепторов нарастает быстро в течение 20-30 мин, и только к 50-60 мин достигает максимума.

Определение состояния темновой адаптации проводят при помощи специального прибора - адаптометра. Ориентировочное определение темновой адаптации проводят с помощью таблицы Кравкова-Пуркинье. Таблица представляет собой кусок черного картона размером 20 х 20 см, на котором наклеены 4 квадрата размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. Врач выключает освещение и предъявляет больному таблицу на расстоянии 40-50 см. Темновая адаптация нормальная, если пациент начинает видеть желтый квадрат через 30-40 с, а голубой - через 40-50 с. Темновая адаптация у пациента снижена, если он увидел желтый квадрат через 30-40 с, а голубой - более чем через 60 с или не увидел его совсем.

Гемералопия - ослабление адаптации глаза к темноте. Гемералопия проявляется резким снижением сумеречного зрения, в то время как дневное зрение обычно сохранено. Выделяют симптоматическую, эссенциальную и врожденную гемералопию.

Симптоматическая гемералопия сопровождает различные офтальмологические заболевания: пигментную абиотрофию сетчатки, сидероз, миопию высокой степени с выраженными изменениями глазного дна.

Эссенциальная гемералопия обусловлена гиповитаминозом A. Ретинол служит субстратом для синтеза родопсина, который нарушается при экзо- и эндогенном дефиците витамина.

Врожденная гемералопия - генетическое заболевание. Офтальмоскопических изменений при этом не выявляют.

БИНОКУЛЯРНОЕ ЗРЕНИЕ

Зрение одним глазом называют монокулярным. Об одновременном зрении говорят тогда, когда при рассматривании предмета двумя глазами не происходит фузии (слияния в коре головного мозга зритель- ных образов, возникающих на сетчатке каждого глаза в отдельности) и возникает диплопия (двоение).

Бинокулярное зрение - способность рассматривать предмет двумя глазами без возникновения диплопии. Бинокулярное зрение формируется к 7-15 годам. При бинокулярном зрении острота зрения примерно на 40% выше, чем при монокулярном зрении. Одним глазом без поворота головы человек способен охватить около 140? пространства,

двумя глазами - около 180?. Но самым важное - то, что бинокулярное зрение позволяет определять относительную удаленность окружающих предметов, то есть осуществлять стереоскопическое зрение.

Если предмет равноудален от оптических центров обоих глаз, то его изображение проецируется на идентичные (корреспондирующие)

участки сетчаток. Полученное изображение передается в один участок коры головного мозга, и изображения воспринимаются как единый образ (рис. 3.11).

В случае если объект удален от одного глаза больше, чем от другого, его изображения проецируются на неидентичные (диспаратные) участки сетчаток и передаются в разные участки коры головного мозга, в результате не происходит фузии и должна возникать диплопия. Однако в процессе функционального развития зрительного анализатора такое двоение воспринимается как нормальное, потому что кроме информации от диспарантных участков к мозгу поступает и информация от корреспондирующих отделов сетчатки. При этом субъективного ощущения диплопии не возникает (в отличие от одновременного зрения, при котором нет корреспондирующих участков сетчатки), а на основании различий между полученными от двух сетчаток изображений происходит стереоскопический анализ пространства.

Условия формирования бинокулярного зрения следующие:

Острота зрения обоих глаз должна быть не ниже 0,3;

Соответствие конвергенции и аккомодации;

Скоординированные движения обоих глазных яблок;

Рис. 3.11. Механизм бинокулярного зрения

Изейкония - одинаковая величина изображений, формирующихся на сетчатках обоих глаз (для этого рефракция обоих глаз не должна отличаться более чем на 2 дптр);

Наличие фузии (фузионного рефлекса) - способность мозга к слиянию изображений от корреспондирующих участков обоих сетчаток.

Способы определения бинокулярного зрения

Проба с промахиванием. Врач и пациент располагаются друг напротив друга на расстоянии 70-80 см, каждый удерживает спицу (карандаш) за кончик. Пациента просят дотронуться кончиком своей спицы до кончика спицы врача в вертикальном положении. Вначале он проделывает это при открытых обоих глазах, затем прикрывая поочередно один глаз. При наличии бинокулярного зрения пациент легко выполняет задачу при открытых обоих глазах и промахивается, если один глаз закрыт.

Опыт Соколова (с «дырой» в ладони). Правой рукой пациент держит перед правым глазом свернутый в трубку лист бумаги, ребро ладони левой руки располагает на боковой поверхности конца трубки. Обоими глазами обследуемый смотрит прямо на какой-либо предмет, расположенный на расстоянии 4-5 м. При бинокулярном зрении пациент видит «дыру» в ладони, сквозь которую видна та же картина, что и через трубку. При монокулярном зрении «дыра» в ладони отсутствует.

Четырехточечный тест используют для более точного определения характера зрения с помощью четырехточечного цветового прибора или проектора знаков.

Центральное или форменное зрение осуществляется наиболее высокодифференцированной областью сетчатки — центральной ямкой желтого пятна, где сосредоточены только колбочки. Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза.

При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. На основании многочисленных исследований и измерений установлено, что нормальный глаз человека может раздельно воспринять два раздражения под углом зрения в одну минуту.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна. Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Для исследования остроты зрения предложены различные таблицы с расположенными на них буквами или знаками различной величины. Впервые специальные таблицы предложил в 1862 году Снеллен. На принципе Снеллена строились все последующие таблицы. В настоящее время для определения остроты зрения пользуются таблицами Сивцева и Головина.

Таблицы состоят из 12 рядов букв. Каждая из букв в целом видна с определенного расстояния под углом в 50, а каждый штрих буквы под углом зрения в 10. Первый ряд таблицы виден при нормальной остроте зрения равной 1,0 с расстояния 50 м, буквы десятого ряда с расстояния 5 м.

Исследование остроты зрения проводится с расстояния 5 м и для каждого глаза отдельно. Справа в таблице стоит цифра, указывающая остроту зрения при проверке с расстояния 5 м, а слева цифра, указывающая расстояние, с которого этот ряд должен видеть исследуемый при нормальной остроте зрения.

Острота зрения может быть вычислена по формуле Снеллена:

где V (Visus) — острота зрения, d — расстояние, с которого видит больной, D — расстояние, с которого должен видеть глаз с нормальной остротой зрения знаки данного ряда на таблице.

Если исследуемый читает буквы 10 ряда с расстояния 5 м, то Visus = 5/5 = 1,0. Если же он читает только первую строчку таблицы, то Visus = 5/50 = 0,1 и т.д. Если острота зрения ниже 0,1, т.е. больной не видит первую строчку таблицы, то можно больного подводить к таблице пока он не увидит первую строчку и затем остроту зрения определить с помощью формулы Снеллена.

На практике пользуются показам раздвинутых пальцев врача, учитывая что толщина пальца приблизительно равна ширине штриха первого ряда таблицы, т.е. не больного подводят к таблице, а врач подходит к больному, показывая раздвинутые пальцы или оптотипы Поляка. И также, как в первом случае, остроту зрения рассчитывают по формуле. Если больной считает пальцы с расстояния 1 м, то его острота зрения равна 1:50 = 0,02, если с расстояния двух метров, то 2:50 = 0,04 и т.д. Если больной считает пальцы на расстоянии меньше 50 см, то острота зрения равна счету пальцев на расстоянии 40, 30, 20, 10 см, счету пальцев у лица. Если отсутствует даже такое минимальное форменное зрение, а сохраняется способность отличать свет от тьмы, зрение обозначается как бесконечно малое зрение — светоощущение 1/бесконечность.

При светоощущении с правильной проекцией света Visus = 1/бесконечность proectia lucis certa. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то острота зрения расценивается как светоощущение с неправильной светопроекцией и обозначается Visus = 1/бесконечность рг. 1. incerta. При отсутствии даже светоощущения, зрение равно нулю и обозначается так: Visus = 0.

Правильность проекции света определяется при помощи источника света и зеркала офтальмоскопа. Больной садится, как при исследовании глаза методом проходящего света, и в глаз, который проверяют, направляется с разных сторон пучок света, который отражается от зеркала офтальмоскопа. Если функции сетчатки и зрительного нерва сохранились на всем протяжении, то больной говорит точно, с какой стороны на глаз направлен свет (сверху, снизу, справа, слева).

Определение наличия светоощущения и состояния проекции света очень важно для решения вопроса о целесообразности некоторых видов оперативного лечения. Если, например, при помутнении роговицы и хрусталика зрение равно правильному светоощущению, это указывает, что сохранены функции зрительного аппарата и можно рассчитывать на успех операции.

Зрение, равное нулю, свидетельствует об абсолютной слепоте. Более точно состояние сетчатки и зрительного нерва можно определить с помощью электрофизиологических методов исследования.

Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам — у большинства 0,8-1,0.

На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Надо знать, что зрачок у новорожденных узкий и вяло реагирует на свет, поэтому проверять его реакцию надо путем сильного засвета глаза и лучше в затемненной комнате. На 2-й 3-й неделе — по кратковременной фиксации взглядом источника света или яркого предмета. В возрасте 4-5 недель движения глаз становятся координированными и развивается устойчивая центральная фиксация взора. Если зрение хорошее, то ребенок в этом возрасте способен долго удерживать взгляд на источнике света или ярких предметах. Кроме того, в этом возрасте появляется рефлекс смыкания век в ответ на быстрое приближение к его лицу какого-либо предмета. Количественно определить остроту зрения и в более позднем возрасте почти невозможно.

В первые годы жизни об остроте зрения судят по тому, с какого расстояния он узнает окружающих людей, игрушки. В возрасте 3, а у умственно хорошо развитых детей и 2 лет, часто можно определить остроту зрения по детским таблицам. Таблицы чрезвычайно разнообразны по своему содержанию.

В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Цветоощущение, методы исследования и диагностика его расстройств

Человеческий глаз различает не только форму, но и цвет предмета. Цветоощущение, также как и острота зрения, является функцией колбочкового аппарата сетчатки и связанных с ним нервных центров. Человеческий глаз воспринимает цвета с длиной волны от 380 до 800 нм.

Богатство цветов сводится к 7 цветам спектра, на которые разлагается, как показал еще Ньютон, солнечный свет, пропущенный через призму. Лучи длиной более 800 нм являются инфракрасными и не входят в состав видимого человеком спектра. Лучи менее 380 нм являются ультрафиолетовыми и не вызывают у человека оптического эффекта.

Все цвета разделяются на ахроматические (белые, черные и всевозможные серые) и хроматические (все цвета спектра, кроме белого, черного и серого). Человеческий глаз может различать до 300 оттенков ахроматического цвета и десятками тысяч хроматических цветов в различных сочетаниях. Хроматические цвета отличаются друг от друга по трем основным признакам: по цветовому тону, яркости (светлоте) и насыщенности.

Цветовой тон — качество цвета, которое мы обозначаем словами красный, желтый, зеленый и т.д., и характеризуется он длиной волны. Ахроматические цвета цветового тона не имеют.

Яркость или светлота цвета — это близость его к белому цвету. Чем ближе цвет к белому, тем он светлее.

Насыщенность — это густота тона, процентное соотношение основного тона и примесей к нему. Чем больше в цвете основного тона, тем он насыщенней.

Цветовые ощущения вызываются не только монохроматическим лучом с определенной длиной волны, но и совокупностью лучей с различной длиной волн, подчиненной законам оптического смещения цветов. Каждому основному цвету соответствует дополнительный, от смешения с которым получается белый цвет.

Пары дополнительных цветов находятся в диаметрально противоположных точках спектра: красный и зеленый, оранжевый и голубой, синий и желтый. Смешение цветов в спектре, расположенных близко друг от друга, дает ощущение нового хроматического цвета. Например, от смешения красного с желтым получается оранжевый, синего с зеленым — голубой. Все разнообразие ощущения цветов может быть получено путем смешения только трех основных цветов: красного, зеленого и синего. Т.к. существует три основных цвета, то в сетчатке глаза должны существовать специальные элементы для восприятия этих цветов.

Трехкомпонентную теорию цветоощущения предложил в 1757 году М.В. Ломоносов и в 1807 году английский ученый Томас Юнг. Они высказали предположение, что в сетчатке имеются троякого рода элементы, каждый из которых специфичен только для одного цвета и не воспринимает другого. Но в жизни оказывается, что потеря одного цвета связана с изменением всего цветного миросозерцания.

Если нет ощущения красного цвета, то и зеленый и фиолетовый цвета становятся несколько измененными. Через 50 лет Гельмгольц, выступивший со своей теорией трехкомпонентности, указал, что каждый из элементов, будучи специфичен для одного основного цвета, раздражается и другими цветами, но в меньшей степени. Например, красный цвет раздражает сильнее всего красные элементы, но в небольшой степени зеленые и фиолетовые. Зеленые лучи — сильно зеленые, слабо — красные и фиолетовые. Фиолетовый цвет действует очень сильно на элементы фиолетовые, слабее — на зеленые и красные. Если все три рода элементов раздражены в строго определенных отношениях, то получается ощущение белого цвета, а отсутствие возбуждения дает ощущение черного цвета.

Возбуждение только двух или всех трех элементов двумя или тремя раздражителями в различных степенях и соотношениях ведет к ощущению всей гаммы имеющихся в природе цветов. Люди с одинаковым развитием всех трех элементов имеют, согласно этой теории, нормальное цветоощущение и называются нормальными трихроматами. Если элементы не одинаково развиты, то наблюдается нарушение восприятия цветов.

Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже — у женщин (0,5%).

Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами — зеленого, тританопами — фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый — редко. Протанопией страдал знаменитый физик Дальтон, который в 1798 году впервые точно описал цветослепоту на красный цвет.

У некоторых лиц наблюдается ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. Ослабление восприятия красного цвета называется протаномалией, зеленого — дейтераномалией и фиолетового — тританомалией.

По степени выраженности цветоаномалии различают аномалии типа А, В, С. К цветоаномалиям А относятся более далекие от нормы формы, к С — более тяготеющие к норме. Промежуточное положение занимают цветоаномалы В.

Крайне редко встречается ахромазия — полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете, как на черно-белой фотографии. При ахромазии обычно бывают и другие изменения глаз: светобоязнь, нистагм, центральное зрение не бывает выше 0,1 из-за аплазии центральной ямки, никтолапия (улучшение зрения при пониженном освещении).

Полная цветовая слепота большей частью проявляется как семейное страдание с рецессивным типом наследования (цветовая астенопия). Цветовую астенопию у отдельных людей следует рассматривать как явление физиологическое, свидетельствующее о недостаточной устойчивости хроматического зрения.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других — усиливаться. Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина .

Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми.

Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия. В детской практике ребенку младшего возраста предлагают кисточкой или указкой провести по цифре или фигуре, которую он различает. Кроме таблиц, для диагностики расстройств и более точного определения качества цветового зрения пользуются специальными спектральными аппаратами — аномалоскопами. Исследование цветоощущения имеет большое практическое значение.

Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже — желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы.

14969 0

Предметное зрение начинает проявляться у детей примерно со второго месяца жизни, когда ребенок живо реагирует на мать. К 6—8 мес дети начинают отличать простые геометрические фигуры, а с начала второго года жизни или позже различают рисунки. В 3-летнем возрасте острота зрения, равная 1, обнаруживается в среднем у 5—10% детей, в 7-летнем — у 45—55%, в 9-летнем — у 60%, в 11-летнем — у 80% и в 14-летнем — у 90% детей.

Разрешающая способность глаза, а следовательно, в известной мере и острота зрения зависят не только от его строения, но и от флюктуации света, количества квантов, попадающих на светочувствительную часть сетчатки, клинической рефракции, сферической и хроматической аберрации, дифракции и др. Отчетливое восприятие предмета слагается также из безусловнорефлекторных двигательных актов глаза (рис. 32).

Исключительно важным и совершенно обязательным моментом для оценки состояния здоровья новорожденных является исследование их зрения.

Естественно, что определить наличие или отсутствие зрения как врач, так и средний медицинский персонал могут лишь по доступным, простым, но достаточно информативным признакам (табл. 3).

Таблица 3. Состояние зрения у детей различного возраста [по Ковалевскому Е. И.]



Современные таблицы для проверки остроты зрения, как для детей (рис. 33), так и для взрослых построены по десятичной системе. В них самые мелкие знаки видны под углом, равным 5 мин (а их штрихи — 1 мин) с расстояния в 5 м. Если эти знаки различаются, то по формуле:
V=d/D острота зрения равна 5/5, т. е. 1,0. Это 10-я строка в таблице. Над ней 9-я строка знаков построена таким образом, что с 5 м их можно прочесть при остроте зрения, меньшей на 0,1, т.е. 0,9 и т.д. Самая верхняя строка таблицы различима при остроте зрения 0,1.



Рис. 33. Таблица Орловой для определения остроты зрения у детей.


При нормальной остроте зрения буквы этой строки можно прочесть с расстояния в 50 м. По приведенной выше формуле острота зрения в этом случае равна т. е. 0,1.



Рис. 34. Прибор Ковалевского для дистанционного определения остроты зрения


Перед исследованием остроты зрения по таблицам определяют на близком расстоянии при обоих открытых глазах, знает ли ребенок картинки (буквы, знаки). Затем исследуют зрение каждого глаза с дальнего расстояния (5 м) и остроту зрения при обоих открытых глазах. Острота зрения обоими глазами почти всегда несколько выше (на 0,1—0,3), чем та, которая достигается каждым глазом в отдельности.

Если исследуемый не различает с расстояния 5 м даже первой строки таблицы, необходимо приблизить его к таблице до тех пор, пока не будет виден ясно первый ряд, и далее произвести расчет по формуле. Существует множество простых и более сложных аппаратов с элементами автоматизации (рис. 34) для определения остроты зрения. Особенно удобны и более точны для определения остроты зрения у детей старшего возраста и у взрослых автоматизированные проекторы знаков (фороптеры).

При помутнении сред глаза (роговица, хрусталик) острота зрения может быть снижена до светоощущения, однако проекция света почти всегда остается уверенной. Отсутствие правильной проекции света (perceplio el proecllo lucis incerta) или полное отсутствие светоощущсния (vis abs-О) указывает на поражение зрительно-нервного аппарата глаза и бесперспективность оптико-реконструктивных операций.

Для объективной регистрации остроты зрения и количественного ее определения применяют методы оптокинетического нистагма (ОКН). Он основан на регистрации движений глаз в ответ на движения удаленных на различное расстояние и разных по величине тест-объектов.

Ковалевский Е.И.

Денискина Венера Закировна, заведующая лабораторией

ФГНУ «Институт коррекционной педагогики»

Зрительные возможности слепых с остаточным форменным зрением

В статье приводятся примеры и анализируются особенности зрительного восприятия слепых детей, имеющих форменное (предметное) зрение. Показана необходимость знания педагогами и (ре)абилитологами зрительных возможностей при формировании компенсаторных навыков, лежащих в основе социально-адаптивного поведения.

Ключевые слова: дети с нарушением зрения, слепые дети, слепые дети с остаточным форменным (предметным) зрением, приемы использования остаточного форменного зрения, автобиографический метод.

Данная статья является логическим продолжением публикации «Особенности зрительного восприятия у слепых, имеющих остаточное зрение» («Дефектология», № 5, 2011). В соответствии с представленной в ней педагогической классификацией, к слепым с остаточным форменным (предметным) зрением мы относим детей с остротой зрения от 0,01 до 0,04.

Приведем примеры, иллюстрирующие приемы использования зрения этой группой слепых, и покажем, что они обусловлены не только низким, но все-таки форменным зрением, но и состоянием других зрительных функций (цветовым зрением, полем зрения, состоянием световой чувствительности). Именно поэтому в учебно-воспитательном и коррекционно-(ре)абилитационном процессах специалистам важно знать зрительные функции в норме и патологии, чтобы понимать, как именно видит ребенок с нарушением зрения.

Обратимся к примерам.

Екатерина А.: «Однажды мне пришлось играть в японские карты. Сначала было очень трудно, потому что все рисунки были выполнены в одном цвете. Потом заметила, что в углу на карте с изображением валета нарисован 1 квадратик, на карте с дамой - 2 квадратика, а на карте с королем - 3. Как только поняла это различие, перестала пытаться разглядеть картинки, так как не вглядываясь в них, стала ориентироваться на квадратики, сосчитать которые оказалось намного легче».

Валентин Е.: «У меня есть предметное зрение, но я не различаю цвета, т. е. страдаю ахроматизмом. Специалисты говорят, что я вижу окружающий мир так, как человек с нормальным зрением видит черно-белое кино. С детства пользуюсь специальными метками на обуви (например, в виде цифр), на одежде (например, в виде нашивок различных фигур), чтобы не путать свою одежду с чужой. Чтобы найти свое место в концертном зале или театре, я не отсчитываю ряды, потому что первый ряд иногда оказывается нулевым, и не пытаюсь разглядеть цифры в надписях. Я смело иду до ряда, где с края сидит зритель, и спрашиваю у него номер его ряда, и уже от него веду отсчет».

Таким образом, наличие форменного остаточного зрения расширяет возможности использования зрительной информации, потому что это зрение доставляет больше зрительных сигналов (по сравнению с теми слепыми, у которых имеется остаточное, но более низкое зрение). Задача реабилитолога - научить человека выбирать из нескольких зрительных сигналов те, которые наиболее рациональным путем позволяют решить имеющуюся проблему (задачу). Умение рационально использовать доступную зрительную информацию свидетельствует об уровне реабилитированности человека с глубоким нарушением зрения.

Слепота, даже при наличии остаточного форменного зрения, чаще всего, своеобразно отражается и на манерах человека. При этом сами инвалиды, как правило, не догадываются о внешних проявлениях последствий своего нарушенного зрения. Во всяком случае, в моем опыте было только так. Узнавали они (дети и взрослые) об этом только в ходе инициированной мною же специальной работы со стороны воспитателей и (ре)абилитологов. В литературных источниках можно встретить иллюстрации деформации поля зрения, но практически нет примеров того, каким образом сказывается деформация поля зрения на манерах слепых с остаточным зрением, и как зрячие люди воспринимают эти манеры и реагируют на них. А ведь эти манеры зачастую требуют коррекции. Кроме того, эти манеры могут «подсказать» педагогам, родителям и (ре)абилитологам особенности деформации поля зрения, а, следовательно, учитывать эти знания в процессе организации и выполнения различных видов деятельности. Эти доводы говорят о том, что очень важно знать, как именно внешне проявляются различные формы деформации поля зрения.

Рассмотрим примеры

Первый пример . В студенческие годы мое внимание привлек незрячий специалист - преподаватель иностранного языка в высшем учебном заведении. Он был образован, умен, разносторонне развит. Все меня в нем восхищало, только вот передвигался он очень странно: ходил без трости, но при каждом шаге поворачивал голову, поочередно, то вправо, то влево. Тогда я не понимала причину такой странной манеры передвижения, но как можно мягче спросила об этом. Ответ тогда меня удивил: «Головой кручу? Не замечал».

Впоследствии, изучая «Основы патологии органа зрения», я поняла причину походки того незрячего педагога. Теперь же привожу этот случай в качестве примера, иллюстрирующего половинчатое выпадение поля зрения (гемианопсию). Дело в том, что когда выпадают, например, левые половинки поля зрения обоих глаз, поле и без того слабого зрения слепых людей с форменным остаточным зрением, оказывается «полосатым». Причем вертикальные полоски, в которые человек пусть нечетко, но видит крупные окружающие предметы, чередуются с вертикальными темными полосами, в которые человек ничего не видит. Так вот, чтобы увидеть и то пространство, которое скрыто за выпадающими участками, человек вынужден поворачивать голову при каждом шаге, чтобы сканировать скрытые за темными полосами участки пространства и составлять как из пазлов более полную картину окружающего мира.

Второй пример . Однажды после лекции по теме «Учет патологии органа зрения учащихся в учебно-воспитательном и коррекционно-(ре)абилитационном процессах» ко мне подошла завуч очень эффективно работающей школы для слепых и слабовидящих детей и сказала: «Моя квартира в доме, в котором живет много инвалидов по зрению. Одна женщина ходит именно так, как вы описали. Меня раздражала ее походка… Только теперь поняла, что надо было не раздражаться, а сочувствовать ей; посоветовать обучиться пользованию ориентировочной тростью, чтобы с ее помощью контролировать дорогу по маршруту передвижения в выпадающих участках поля зрения, чтобы не поворачивать голову при каждом шаге. Для меня это открытие! А ведь я много лет работаю с инвалидами по зрению».

Третий пример . Будучи уже кандидатом наук, я занималась практической реабилитацией человека, срок инвалидности которого составлял 1 год; причем получил он эту инвалидность в самый расцвет своей карьеры. Замечу, что я принципиально никогда не использую термин «поздноослепший», для меня - инвалида - он не корректный. В каком бы возрасте ни произошла утрата зрения, это всегда очень рано. Кто потерял зрение, тот со мной спорить не будет.

Приступая к реабилитации, всегда объясняю, что задавать можно абсолютно любые вопросы, относящиеся к «секретам» жизни с очень низким зрением или вовсе без него: «Как без зрительного контроля погладить одежду?», «Как найти упавшую вещь?», «Как поровну разлить сок по стаканам?» и т. д. и т. п.

Однажды мне надо было прочитать текст, написанный плоским шрифтом. Надеваю очки с линзами в 20 диоптрий и начинаю читать. Слышу: «Можно спросить, почему при чтении вы постоянно водите головой слева направо?» Отвечаю: «Во время чтения заодно и с шейным хондрозом борюсь». Затем серьезно добавляю: «Я пошутила. На самом деле это вызвано особенностью моего поля зрения. Оно у меня трубчатое, т. е. при таком поле зрения человек видит мир так, как если бы смотрел в узенькую трубочку. (Хорошая иллюстрация трубчатого зрения дана М. П. Бондаренко и Н. С. Комовой во вкладыше журнала «Воспитание и обучение детей с отклонением в развитии», № 3, 2010.) Такое зрение позволяет мне увидеть 3–4 буквы. Чтобы прочитать всю строку приходится «передвигать трубочку» вдоль строки, последовательно прочитывая последующие буквы. Внешне это выглядит так: человек держит читаемый текст точно перед самым лицом (так как если опустит его ниже, то из поля его зрения исчезнет сам читаемый текст) и при этом совершает движения головой слева направо и обратно. Причем слева направо делает это медленно, потому что чтение при таком зрении процесс трудоемкий, а в обратную сторону (справа налево, т. е. к началу строки) быстро, так как в обратную сторону ничего считывать не надо.

Однако самое примечательное для меня в описываемом случае состоит в том, что, имея к тому времени диплом тифлопедагога, опыт успешной работы в качестве преподавателя в школе для слепых и слабовидящих детей и ученую степень кандидата педагогических наук, до прямого вопроса я не замечала за собой описанной особенности. Вот уж воистину, в своем глазу бревна не замечаем. Ответ на вопрос у меня (как тифлореабилитолога) не вызвал никаких трудностей, но я-то за собой описанной особенности никогда до этого вопроса не замечала. А со стороны-то окружающим я казалась очень странной. Наверное, некоторые эту специфическую особенность чтения трубчатым зрением принимали за странности инвалидов по зрению. Да и примеров убеждающих в этом мнении у меня достаточно.

Четвертый пример. Разбирая на лекции различные варианты деформации поля зрения, для иллюстрации теоретического материала предложила слушателям (работникам системы Всероссийского общества слепых - ВОС) самим демонстрировать внешние проявления называемых мною нарушений. Дохожу до варианта, в котором надо было изобразить взгляд человека (его манеру держать голову), имеющего остаточное форменное зрение только в верхнебоковой кнаружи части поля зрения. При такой деформации видит не весь боковой участок глаза и не весь верхний, а зрение имеется только в верхнебоковой части поля зрения кнаружи глаза. Слушатели выполняют задание. Вдруг одна «ученица» с ужасом и сожалением восклицает: «Так она просто так смотрела! Она по-другому не могла. Значит, я ее ни за что обидела?!»

Как выяснилось, эта курсантка работала комендантом в общежитии при учебно-производственном предприятии ВОС. Естественно, общалась с проживающими там инвалидами по зрению. Особенно большое участие она принимала в судьбе молодой незрячей матери-одиночки. Но сколько бы комендант ни помогала этой женщине, женщина всегда на нее «смотрела косо и как бы исподлобья». Однажды она (комендант) не выдержала и «высказала неблагодарной женщине» свою обиду: «За что ты на меня всегда косо смотришь?! За мои хорошие дела?!» Женщина оторопела и ушла с наполненными слезами глазами, не пытаясь оправдываться.

А не оправдывалась она потому, что, как и я, не видела себя со стороны, а окружающие на этом никогда не акцентировали ее внимание. Она не знала, как именно выглядит ее взгляд, а тифлологического образования у нее, в отличие от меня, не было. Женщина просто не поняла, почему и за что ее обидел человек, который ей так помогает, и которому (я в этом совершенно уверена!) она была очень благодарна. На объект обожания женщина смотрела тем участком глаза, на котором имелось зрение (ведь мы - инвалиды - понимаем, что не до каждого человека можно дотрагиваться). А объект ее обругал и женщина, наверное, совсем не поняла за что, потому что на внешних проявлениях нарушения зрения, как правило, ни педагоги, ни родители внимание не заостряют. Многие не делают этого потому, что им самим не хватает знаний для грамотного объяснения.

Иногда нормально видящие люди не понимают инвалидов по зрению, даже если являются любящими родителями и постоянно находятся при ребенке. «Держи лицо! Держи лицо! Убери руки!» - строго и громко буквально приказывала мама 4-летней дочке, которую она привела на первичное знакомство со специалистами «Маминой школы» (школы родительского мастерства для родителей, воспитывающих детей с глубоким нарушением зрения). Знакомлюсь с диагнозом (частичная атрофия зрительного нерва, концентрическое сужение поля зрения), и сердце сжимается от боли. Чего же ждать от посторонних для ребенка людей, если образованная мама совсем не понимает зрительные возможности своего ребенка?! Как может девочка в незнакомом пространстве «держать голову», т. е. не смотреть под ноги, если она мир видит в узенькую трубочку и без направления взгляда вниз (на пол, на дорогу и т. п.) не видит препятствий? Ей 4 года. Она уже имеет опыт столкновений с препятствиями, которые не может увидеть, не глядя себе под ноги. А мама все осанку дочке исправляет, вместо того, чтобы понять, что и как видит ее ребенок-инвалид по зрению.

Итак, нарушения поля зрения часто являются причиной «странного» поведения инвалидов по зрению. Зачастую именно внешние проявления последствий нарушения зрения воспринимаются нормально видящими людьми как «странные манеры» слепых людей, их ненормальность, даже как интеллектуальная недостаточность.

Понимание зрительных возможностей людей с остаточным зрением, напротив, позволяет грамотно строить общение.На международной конференции меня совершенно очаровала переводчица. Она, будучи инвалидом по зрению, лучше других коллег выполняла свою работу, была хорошо и соответственно мероприятию одета, ухожена. Нам обеим захотелось пообщаться. Наконец-то нашли время, встретились и отошли в сторону от других участников конференции. Далее картина была следующей. Я встаю четко напротив нее, чтобы видеть ее своим трубчатым зрением, но она поворачивается ко мне боком. Я опять разворачиваюсь так, чтобы моя «трубочка» была направлена на нее, а она, разворачиваясь, опять уходит от моего взгляда. Мы описываем таким образом полный круг (вот уж, наверное, со стороны странным было это кружение!), после чего следует диалог:

Стоп. Ты видишь только боком левого глаза?

А я только центром правого глаза. Тогда встань ко мне боком, и мы будем видеть друг друга. А вот окружающие будут удивляться, почему это я смотрю на тебя, а ты стоишь ко мне четко боком и говоришь в сторону от меня.

Мы обе рассмеялись со словами «слепота - большой порок» и начали общаться. Кому-то может показаться странным слово «рассмеялись». На самом деле - ничего странного. Невозможно постоянно переживать свой дефект. А юмор помогает инвалидам справляться с возникающими трудностями.

Многие из слепых людей страдают либо светобоязнью (нарушением световой адаптации) , либо нарушением темновой адаптации. Это обстоятельство тоже накладывает свои особенности на их взаимодействие между собой. Например, в интернате я и девочка из соседнего класса очень любили рисовать цветными карандашами (фломастеров в ту пору еще не было). У меня тяга к рисованию, наверное, была от подражания дяде и старшей сестре, которые рисовали много и очень хорошо. У девочки же просто были способности к изобразительной деятельности, и пришла она в школу слепых из массовой школы ввиду прогрессирующего ухудшения зрения уже только в 8-й класс, поэтому владела определенными навыками рисования. Так вот, в те 60-е годы XX века искусственное освещение в школе было настолько слабое, что я со своим трубчатым зрением (при котором нет сумеречного зрения, вследствие чего нарушена темновая адаптация) могла рисовать только днем при естественном и достаточно хорошем освещении, а подруга моя, напротив, могла рисовать только вечером. При ее центральной скотоме (выпадении центрального участка поля зрения) она не могла зрительно работать днем, зато с удовольствием рисовала вечером. Поэтому рисовали мы в разное время суток и рассматривали рисунки в разное время суток, а рисовать, сидя рядышком, почти никогда не удавалось. Я рисовала днем, а она вечером рассматривала мои рисунки; затем сама готовила свои рисунки, которые я могла рассмотреть уже только на следующий день. В современных условиях при использовании индивидуального освещения, защищающих козырьков, очков для близи, учете других индивидуальных особенностей зрительного восприятия конкретных детей (конечно, и взрослых) проблемы, подобные описанной, вполне можно решить. Правда, это возможно только при владении педагогами соответствующими знаниями, от которых зависит понимание инвалидом своих проблем и особенностей их решения.

Нарушение темновой и световой адаптации у лиц с остаточным форменным зрением вызывает и другие, более важные для социальной адаптации, особенности. Например, люди с трубчатым зрением (у них страдает периферическое зрение, поэтому и нарушена темновая адаптация) видят значительно хуже или совсем не видят в сумерках. Поэтому, если даже они днем прекрасно ориентируются с помощью зрения, то их все равно необходимо обучать ориентировке в пространстве с помощью трости, то есть как слепых. Иначе в пасмурную погоду и в темное время суток они будут мало мобильными или вовсе не мобильными, то есть не смогут передвигаться там, где достаточно свободно ориентировались в светлое время суток. Более того, так как поле зрения у них ограничено во всех направлениях, в том числе и книзу, то они для безопасного передвижения без трости вынуждены постоянно смотреть под ноги, то есть низко наклонять голову. Если же мы хотим, чтобы инвалид при таком нарушении поля зрения передвигался с поднятой головой, то для контролирования пространства под ногами его обязательно надо обучать передвижению с помощью трости.

Справедливости ради, заметим, что есть приемы, которые позволяют днем на оживленных маршрутах передвигаться быстро и без трости. Например, в толпе я, как правило, иду за человеком («лидером» по терминологии слепых спортсменов-бегунов), который движется в нужном мне направлении и с устраивающей меня скоростью. Лидера научилась выбирать (а если необходимо, то и менять) очень быстро, делаю это, прямо- таки, «на автомате». Именно ходьба за лидером позволяет быстро и достаточно безопасно передвигаться. Потому что нормально видящий человек и лужи обойдет, и стройку обогнет и т. д. Например, вдруг лидер меняет траекторию маршрута, то есть идет в нужном направлении, но отклоняется от маршрута влево, надо не задумываясь четко следовать за ним. Главное - во время реагировать на изменения в его поведении, то есть продолжать двигаться за ним и не терять его из виду, так как при слабом зрении его можно легко потерять. А уж что именно лидер обходил, совершенно не должно волновать, когда торопишься успеть добраться до места к определенному сроку.

Периферическое зрение позволяет человеку быстрее замечать движущиеся объекты, чем центральное зрение, поэтому детей с нарушением периферического зрения (нарушением темновой адаптации) необходимо приучать с особой осторожностью переходить через дорогу, не полагаясь только на свое дефектное зрение.

В детстве мне никто этого не объяснял и я, естественно, доверяла своему зрению, т. е. излишне полагалась на него. В студенческие времена (когда жила без присмотра родителей и воспитателей) я несколько раз попадала в ситуации, когда, как мне казалось, далеко едущая машина то выбивала портфель из рук, то разворачивала меня, то отбрасывала в сторону. Тогда я только удивлялась этим происшествиям, теперь же - понимаю их причину.

В тифлопедагогике известно, что слепые с остаточным зрением нуждаются в словесных пояснениях зрячих относительно зрительных стимулов, особенно, воспринимаемых инвалидом впервые (картин, объектов и явлений) . Причем в этих пояснениях нуждаются все инвалиды по зрению. Но практика показывает, что зрячие больше пояснений делают для слепых с остаточным зрением трех первых групп (имеющих светоощущение, светоощущение с цветоразличением, а также видящих движения руки перед лицом). Вместе с тем, для лиц, имеющих слепоту с остаточным форменным зрением, поле пояснений иногда должно быть даже шире, чем для лиц с меньшими зрительными возможностями. Почему? Потому что дефектное форменное зрение часто дает совершенно неверную информацию, которая требует коррекции, а более низкое остаточное зрение дает так мало зрительной информации, что инвалиды знают об объекте лишь то, что сказали сопровождающие зрячие. Выпадение отдельных (особенно мелких) для конкретного человека с форменным остаточным зрением деталей приводит к неправильному толкованию событий, поступков, действий.

Приведу пример . Как-то мне рассказали следующий анекдот: «Идет по дорожке Вини Пух и при этом что-то жует. За ним семенит Пятачок:

Вини, угости меня, пожалуйста, булочкой.

Это не булочка. (Продолжает, пожевывая, идти дальше.)

Вини, угости, пожалуйста, бубликом?

Это не бублик! (Продолжает жевать и идти дальше.)

Вини, ну, пожалуйста, угости печеньем!

Это не печенье! И вообще, Пятачок, определись, что ты хочешь!

Выслушала анекдот и вслух рассуждаю: «Забавно, но не понятно, почему так отрицательно выставлен Вини Пух в анекдоте. Ведь он такой заботливый. В гостях у кролика повязывал Пятачку слюнявчик!» В ответ слышу: «Да нет, это он Пятачку рот прикрыл слюнявчиком, чтобы тот не смог много съесть». Своим зрением я рассмотрела слюнявчик, но не смогла увидеть, как именно Вини Пух его повязал Пятачку. Мне и в голову не могло придти, что можно слюнявчиком закрыть рот. Отсюда и восприняла анекдот как клевету на Вини Пуха. Оказалось, что анекдот-то был как раз на тему эгоизма Вин Пуха.

Остановимся на том, как трудно нормально видящим людям (даже из числа дефектологов) понять слепого человека с остаточным форменным зрением . Многие зрячие, которые прекрасно знают о моем низком зрении, забывают о том, что при встрече с инвалидом по зрению, даже если у него имеется остаточное форменное зрение, целесообразнее представиться, чтобы самому не попасть и инвалида не поставить в неловкое положение.

Как-то в зале, где предстояла защита диссертации, со мной поздоровался мужчина; не представляясь, притянул к себе и поцеловал руку (можно заменить на «поздоровался»). «Знакомый» - решила я. - «Кто же это может быть?» Решаю задать наводящий вопрос: «Какими судьбами к нам на Совет?» «Да вот выпала командировка в Москву, решил коллег проведать». По комплекции напомнил известного и знакомого мне дефектолога из ближнего зарубежья. Продолжаю «разведку боем», т. е. задаю наводящие вопросы: «Вы один приехали? … Как семья?... Внуки?» Человек мне в ответ дружелюбно: «Да… Один…Все здоровы… Внуки в порядке». Выходит из зала и идет за мной в лабораторию, расспрашивает, а я не знаю, насколько откровенно можно отвечать, ведь все еще не уверена, что узнала его, поэтому продолжаю «наводить»: «Как супруга?» А мне продолжают отвечать, не называя никаких имен, по которым я могла бы сориентироваться. Наконец-то решаюсь обратиться по имени. В ответ: «Я думал, что один для вас неповторимый, а вы и имени моего не помните. Меня зовут…» Называет имя, я тут же понимаю свою ошибку. Гневно ворчу: «Господи, я вам столько раз объясняла, что не вижу лиц, плохо различаю голоса (осложнение после гриппа), поэтому мне нужно просто представиться!» Получается, что человек и себя (в присутствии сотрудников лаборатории я неверно назвала его имя), и меня поставил в неловкое положение, хотя мы прекрасно относимся друг к другу. Себе тоже вслух выговорила: «Не уверена? Попроси человека представиться! Тогда для опознания собеседника не придется крутиться как уж на сковороде».

Мои наблюдения показывают, что зрячим людям трудно понять, как может человек с открытыми глазами, направленным на собеседника взглядом совсем не различать черты его лица. Более того, близкие мне люди то с обидой, то с недоумением говорят: «Мы тебе махали руками, махали, а ты никакого внимания!» Иногда не могу себя сдержать: «Что же вы только руками махали? Могли бы еще и подмигивать. В обоих случаях я не могу видеть подаваемых сигналов».

Кстати, еще один пример на эту тему. Как-то спрашиваю учительницу при анализе ее урока в школе для слепых: «А почему вы не подбодрили этого ученика? Он так нуждался в поддержке!» А она мне в ответ: «Подбадривала! Я же на него одобрительно смотрела». Да, взгляд слепые с остаточным форменным зрением могут направить правильно, и даже могут что-то увидеть, но одобрительные взгляды этим зрением заметить невозможно.

Многих взрослых, в том числе и педагогов, слепые дети с остаточным форменным зрением вводят в заблуждение тем, что бегают, огибая преграды (но ведь бегают-то только в хорошо освоенном пространстве!), выполняют много различных действий, которые, по мнению зрячих, без хорошего зрения невозможно выполнять. Эти педагоги считают излишними требования относительно соблюдения для лиц с нарушением зрения яркости и контрастности цвета, объяснения тех явлений, которые ребенок с глубоким нарушением зрения не может увидеть в естественных условиях. В подтверждение важности этого довода приведу рассказ Алии Юносовой «Подарок судьбы».

«О том, что у меня плохое зрение я узнала только в семилетнем возрасте, когда начала ходить в школу. Но меня это пока не беспокоило, ведь я могла играть во все игры, разве что "водить" мне приходилось чаще.

Мы жили в небольшом поселке недалеко от железнодорожной станции. Сразу же за домами начиналось ржаное поле, а за ним протекала речушка, с забавными названиями "Бочагов пупок", "Примиловка", "Крыса" и "Самовар". Справа от поля зеленой полосой раскинулась дубовая роща. Она так и называлась "Дубовка".

Я, как и все мои ровесники, гоняла гусей на речку, ходила в "Дубовку" пасти козу. Туда приходило много детей, и мы играли в прятки, качались на качелях и лазали по деревьям. Сверстники меня не обижали. Все было хорошо. Я видела звезды на небе и даже могла отыскать Большую Медведицу. Только одно меня постоянно огорчало: я никогда не видела радуги. Как только это чудо появлялось на небе, все дети радостно кричали: «Радуга! Радуга!» Как я ни старалась разглядеть хоть что-нибудь, ничего не получалось.

Тогда я убегала в сарай и там давала волю слезам. "Ну почему мне так не везет?" - думала я. – Почему все так радуются, а я не могу? Хоть бы разок взглянуть на нее!"

Это случилось в августе. Прошел сильный и теплый дождь, а затем выглянуло солнце. Я выбежала на улицу босиком. Солнце клонилось к западу, а на востоке небо было синее-синее, и на нем яркой дугой повисла радуга. Я это сразу поняла и бросилась на поле, чтобы там с открытого места понаблюдать за этим удивительным явлением природы. Сначала радуга была яркая и пологая, но она двигалась и постепенно становилась круче и круче, концы ее сближались. И вот радуга нависла над рекой как разноцветная арка, застыла на мгновение, а затем, превратившись в столб, стала бледнеть и, наконец, совсем исчезла.

Я долго сидела, молча, потрясенная и очарованная зрелищем. Это был подарок судьбы! Как будто, кто-то большой и могучий сотворил это чудо и преподнес мне в дар.

Теперь я уже никогда не смогу ничего увидеть, но в моей памяти навсегда останется тот августовский вечер со всеми его красками. Даже сейчас, спустя много лет, когда мне говорят, что на небе появилась радуга, - я всегда вспоминаю ту, единственную, мне подаренную».

Этот рассказ публикуется впервые, написан близким мне человеком и, практически, по моей настойчивой просьбе описать свои зрительные впечатления в детстве. Я хорошо помню то время, когда автор рассказа видела лучше меня, хотя обе мы учились с опорой на осязание, т. е., пользуясь при чтении и письме рельефно-точечной системой Брайля. Из приведенного рассказа видно, как важно учитывать зрительные возможности (в данном случае подачу материала на контрастном фоне) при формировании у детей зрительных образов. И как важно насыщать ребенка зрительными впечатлениями, особенно, если он страдает прогрессирующим заболеванием органа зрения.

На проблеме развития зрительного восприятия у слепых детей с остаточным зрением останавливаться здесь не будем, так как наша задача состояла только в выявлении особенностей использования остаточного зрения. Кроме того исследования Л. П. Григорьевой и ее учеников убедительно доказали, что зрительное восприятие с помощью дефектного зрения можно и нужно развивать на специальных занятиях, ибо в процессе этой коррекционной работы улучшаются практически все свойства зрительного восприятия.

Со взрослыми людьми занятия по развитию зрительного восприятия не проводятся, но на занятиях по ориентировке в пространстве свойства зрительного восприятия значительно улучшаются. В качестве примера приведу высказывание незрячей массажистки, которую слепота настигла в выпускном классе школы для слабовидящих детей: «Надо же, когда я видела еще первую строчку (острота зрения 0,1 или 10%), я не могла ходить без сопровождения папы, а теперь у меня острота зрения только 1%, а по знакомым маршрутам самостоятельно могу ходить даже без трости!» Замечу, что высказывание это последовало после ее обучения ориентировке в пространстве с опорой на анализ доступной ей зрительной информации.

Проведенный анализ различных вариантов использования остаточного зрения инвалидами (с учетом материалов публикации, на которую была ссылка в начале статьи) показывает, что при интерпретации зрительной информации слепые с разными формами остаточного зрения имеют специфические возможности его использования. В процессе интерпретации зрительных сигналов слепыми с остаточным зрением большая роль принадлежит мышлению, поэтому очень важно с детства развивать у слепых логическое мышление.

Дефектный зрительный анализатор используется тем эффективнее, чем лучше развиты у человека, в том числе и у ребенка, представления об окружающем мире. Причем эти представления могут быть разных модальностей. Однако развитие детей с остаточным зрением идет при непрерывно нарастающих возможностях использования дефектного зрения, которое больше всего применяется в процессе социально-бытовой и пространственной ориентировки.

Рамки статьи не позволили подробнее рассмотреть примеры, свидетельствующие о том, что ориентировка в пространстве слепых детей с остаточным форменным зрением существенно отличается от ориентировки в пространстве как зрячих, так и слепых с более глубоким нарушением (тотальная слепота, светоощущение, цветоощущение, движения руки перед лицом). Однако приведенные примеры говорят, что методика обучения ориентировке в пространстве слепых должна быть многовариантной и учитывать индивидуальные особенности остаточного зрения. Эта проблема в отечественной тифлопедагогике еще не изучалась и нуждается в специальном исследовании с выходом на методические рекомендации педагогам и родителям.

Таким образом, резюмируя вышеизложенное, можно сделать следующие выводы:

  1. Слепые дети с остаточным форменным зрением часто опознают объекты неверно, опираясь на имеющийся зрительный и социальный опыт.
  2. Многообразие факторов, влияющих на зрительные возможности слепых детей с остаточным форменным зрением, приводит к индивидуальным различиям в приемах его использования. Этот вывод созвучен выводу Р. М. Боскис, подчеркивавшей, что многообразие факторов, влияющих на речевые возможности слабослышащих детей дает «исключительное разнообразие» слуховых возможностей детей с недостатками слуха (1963, С. 315).
  3. Изучение опыта использования слепыми остаточного зрения в познавательной и бытовой деятельности, а также в пространственной ориентировке показывает, что имеется определенная зависимость между глубиной нарушения зрения и качеством зрительного восприятия. В то же время дети и взрослые, которых не обучают использованию дефектного зрения, используют его гораздо ниже своих возможностей, хуже, чем те, которые имеют более низкое зрение, но научены анализировать и интерпретировать получаемую зрительную информацию.
  4. Анализ зрительного восприятия слепых с остаточным форменным зрением позволяет характеризовать его не только как недостаточность, но как активный процесс поступательного развития зрительного восприятия, протекающего своеобразно, по обходным путям в условиях целенаправленного коррекционно-педагогического воздействия. Аналогичный вывод сделан Р.М. Боскис, (1963, С. 202) относительно использования слуха слабослышащими детьми.

Литература

Бондаренко, М. П. Как ребенок с нарушением зрения видит окружающий мир / М. П. Бондаренко, Н. С. Комова // Воспитание и обучение детей с нарушениями развития. - 2010. - № 3. - Странички для занятий с детьми «Мы вместе».

Боскис, Р. М. Глухие и слабослышащие дети / Р. М. Боскис. - М., 1963.

Власова, Т. А. Знание особенностей дефекта - важное условие улучшения учебно-воспитательной работы с аномальными детьми / Т. А. Власова // Дефектология. - 1970. - № 2. - С. 3–20.

Денискина, В. З. Взаимосвязь дошкольного и начального образования детей с нарушением зрения / В. З. Денискина // Воспитание и обучение детей с нарушениями развития. - 2007. - № 5. - С. 20–28.

Сверлов, В. С. Пространственная ориентировка слепых / В. С. Сверлов. - М. : Учпедгиз, 1951. - С. 31–38.