Синтез рекурсивных фильтров по аналоговому прототипу. Метод инварианта при решении математических задач

Процедура перехода от аналоговых фильтров к цифровым фильтрам называется методом инвариантности импульсной характеристики.

Рис. 12.9. Процедура расчета по методу инвариантности импульсной характеристики. (см. скан)

Эта процедура устанавливает, что импульсная характеристика результирующего цифрового фильтра представляет собой выборки импульсной характеристики соответствующего аналогового фильтра и определяется следующим образом:

где Т - интервал дискретизации. Процедура проектирования по этому методу показана на рис. 12.9.

Для иллюстрации метода инвариантности импульсной характеристики

разложим передаточную функцию исходного аналогового фильтра на простые дроби

где полагаем, что а все полюсы различны. Кроме того, для каждого представляет собой полюс аналогового фильтра, а - вычет функции в полюсе Импульсную характеристику аналогового фильтра можно получить, осуществив обратное преобразование Лапласа уравнения (12.29), которое дает

где представляет собой единичную ступенчатую последовательность. Подставив выражение (12.30) в формулу (12.28), получаем импульсную характеристику соответствующего цифрового фильтра

где единичная ступенчатая последовательность. Передаточная функция результирующего цифрового фильтра определяется путем нахождения -преобразования импульсной характеристики, заданной выражением (12.31), следующим образом:

Сравнивая выражения (12.29) и (12.32), получаем соотношение перехода от аналоговых фильтров к цифровым фильтрам для метода инвариантности импульсной характеристики, которое имеет вид

Полюс цифрового фильтра, соответствующий полюсу аналогового фильтра

Пример 12.2. Исходный аналоговый фильтр обладает следующей передаточной функцией:

Решение. Запишем функцию в виде простых дробей

Из уравнений (12.33) следует, что имеет вид

где Т - интервал дискретизации. Упрощая выражение (12.36 а), получаем

Пример 12.3. Нормированный фильтр Чебышева нижних частот второго порядка с неравномерностью в полосе пропускания 3 дБ имеет передаточную функцию вида

Найти - передаточную функцию соответствующего цифрового фильтра с помощью метода инвариантности импульсной характеристики.

Решение. Записывая функцию в виде сомножителей, получаем

Применение уравнений (12.33) к полученному соотношению дает

Для с из уравнения (12.39) следует, что

Рис. 12.10. Амплитудно-частотные характеристики фильтра Чебышева второго порядка с неравномерностью 3 дБ. аналоговый фильтр, - цифровой фильтр, цифровой фильтр

Амплитудно-частотные характеристики функций, заданных выражениями (12 40) и (12.41), приведены на рис. 12 10

Напомним, что периодическая функция переменной 0 с периодом - непериодическая Основное различие в свойствах аналоговых и цифровых фильтров состоит в том, что амплитудно-частотные характеристики результирующего цифрового фильтра будут отклоняться от характеристик исходного аналогового фильтра в тех участках, где характеристическая кривая достигает точек или - интервал дискретизации. Если интервал дискретизации достаточно мал, то отклонение начнется в точке, близкой к . В противном случае отклонение начнется значительно раньше. Подходящий случай показан на рис. 12.10. Следует отметить, что частоты среза цифровых фильтров расположены в точках

где использована информация о частоте среза аналогового фильтра Эти частоты среза повторяются согласно следующему соотношению:

Поскольку импульсная характеристика цифрового фильтра, полученного на основе метода инвариантности импульсной характеристики, является фактически дискретизированным аналогом импульсной характеристики аналогового фильтра частотная характеристика цифрового фильтра представляет собой наложенный вариант частотной характеристики аналогового фильтра, как установлено в соотношении (11.115), и для удобства приводится здесь еще раз:

Если скорость дискретизации достаточно высока, то эффект наложения минимален. На рис. 12.10 для с показано, что эффект наложения, который проявляется в виде отклонения частотных характеристик аналоговых и цифровых фильтров, при трудно различим. Однако при недостаточно высокой скорости дискретизации, например для случая (рис. 12.10), начинает оказывать влияние эффект наложения, так как видно, что заметно отличается от Подставляя в уравнения (12.43), получаем

Следует отметить, что уравнения (12.44) устанавливают соотношение между передаточными функциями цифрового и соответствующего аналогового фильтра для случая инвариантности их импульсных характеристик.

Для исследования характеристик при методе инвариантности импульсной характеристики на соответствие двум необходимым

условиям процедуры перехода (12.10) рассмотрим соотношение

и, следовательно,

Из рис. 12.11 следует, что горизонтальная полоса с шириной в s-плоскости отображается во всю -плоскость, т. е. левая и правая половины этой полосы отображаются соответственно в части -плоскости внутри и вне единичной окружности, а мнимая ось - в единичную окружность. Из рис. 12.11 можно установить, что источник эффекта наложения вызывается тем, что переход (12.45) не однозначен. Например, точки отображаются в одну точку Фактически соотношения (12.45) устанавливают, что аналоговая передаточная функция в каждой полосе шириной накладывается на всю -плоскость для формирования цифровой передаточной функции. Таким образом, метод инвариантности импульсной характеристики не является простым линейным или подобным отображением из s-плоскости в -плоскость. Из-за эффекта наложения метод инвариантности импульсной характеристики применим только для фильтров с существенно ограниченной аналоговой частотной характеристикой, которая удовлетворяет условию

т. е. в случаях фильтров нижних частот и полосовых.

Как было показано, процедура перехода на основе метода инвариантности импульсной характеристики задается уравнениями (12.33), которые устанавливают, что расположение полюсов аналогового фильтра отображается в следующее размещение:

Таким образом, соотношения (12.45) устанавливают связь между размещениями полюсов аналогового и цифрового фильтров. Однако абсолютно неверно утверждение, что соотношения

(кликните для просмотра скана)

Рис. 12.12. Диаграммы полюсов и нулей фильтра Лернера второго порядка: а - вариант аналогового фильтра, б - вариант цифрового фильтра, полученного на основе метода инвариантности импульсной характеристики.

(12.45) определяют связь между расположениями нулей цифрового и аналогового фильтров при инвариантности импульсных характеристик. Подходящим примером является следящий.

Пример 12.4. Задана передаточная функция аналогового фильтра

где Найти расположение нулей и полюсов цифрового фильтра, полученного на основе инвариантности импульсной характеристики. Решение. Разложение функции на простые дроби дает

Передаточная функция соответствующего цифрового фильтра задается согласно (12.33) в виде

Из уравнения (12.50) местоположение конечного нуля цифрового фильтра определяется как

где - расположение нуля аналогового фильтра. Однако полюсы цифрового фильтра расположены следующим образом:

где расположение полюсов аналогового фильтра. Диаграмма размещения полюсов и нулей аналогового и соответствующего ему цифрового фильтров приведена на рис. 12.12.

Как было установлено, уравнения (12.33) применимы как к вещественным, так и к комплексным полюсам Однако для комплексного полюса более удобно рассматривать вместе пару полюсов где черта над переменной используется Для обозначения комплексно-сопряженной величины. Применяя соответственно уравнения (12.33), получим пары преобразований для следующих двух случаев второго порядка:

1. Если передаточная функция аналогового фильтра задана в виде

где полюсы расположены в точках

то передаточная функция соответствующего цифрового фильтра имеет вид

2. Если функция задана в виде

то из процедуры перехода (12.33) следует, что

Пример 12.5. Аналоговый фильтр Баттерворта нижних частот третьего порядка характеризуется следующей передаточной функцией:

Найти передаточную функцию соответствующего цифрового фильтра Баттерворта третьего порядка с помощью метода инвариантности импульсной характеристики,

Решение. Функцию можно записать в виде

Из уравнений (12.33), (12.53)-(12.56) требуемый цифровой фильтр имеет следующую передаточную функцию:

Пример 12.6. Предположим, что цифр свой фильтр нижних частот должен удовлетворять следующим условиям:

а) Частота среза по уровню 3 дБ составляет рад.

б) Неравномерность амплитудно-частотной характеристики в полосе пропускания не более 0,1 дБ для рад.

в) Затухание в полосе задерживания больше 30 дБ для рад.

г) Амплитудно-частотная характеристика имеет монотонно спадающий вид для

д) Интервал дискретизации

Найти передаточную функцию требуемого цифрового фильтра.

Решение. На первом этапе необходимо перевести эти цифровые критерии в аналоговые. Это можно осуществить, учитывая, что, если Т удовлетворяет критерию Найквиста, уравнения (12 43) приближенно приводятся к виду

и, следовательно,

Согласно соотношению (12.606), искомый аналоговый фильтр должен удовлетворять следующим требованиям:

а) Частота среза по уровню 3 дБ составляет

Продолжаем знакомство с аналитическими способами решения сложных задач с параметрами, предлагающихся на различных пробниках и в настоящих вариантах ЕГЭ. В сегодняшнем материале будет рассмотрена новая группа задач, связанных с поиском значений параметра(ов), при которых имеется единственное решение задачи. Слово « единственное» в данной теме является ключевым. Один из самых распространённых методов решения таких задач – так называемый метод симметричных корней или, более научно, метод инвариантностей .

Типичные формулировки таких задач следующие: а , при которых система уравнений имеет единственное решение Или: «Найдите все значения параметра а , при которых уравнение имеет единственный корень.»

Итак, пора познакомиться с инвариантностью. Что это за понятие? В переводе на русский язык слово «инвариантность» означает «неизменяемость» . Неизменяемость чего-то по отношению к чему-то.)

В математике под инвариантностью понимается неизменяемость каких-либо выражений с переменными или функций по отношению к каким-либо преобразованиям над этими самыми переменными . Это может быть замена одной переменной на другую, смена знака и т.п. На словах, быть может, звучит не совсем понятно, но на деле всё гораздо проще.

Рассмотрим простой пример. Все мы с начальной школы знаем (я верю!) переместительное свойство сложения двух чисел:

a + b = b + a .

Кто бы спорил, верно? От перестановки слагаемых сумма не меняется.) По-научному этот факт означает, что выражение a + b инвариантно относительно замены а на b и b на а. Можно сколько угодно менять буквы местами, а суть всего выражения от наших перестановок не изменится.)

Другой классический пример инвариантности – чётность . Если функция f(x) чётная, то, как мы знаем,

F(-x) = f(x),

И тогда можно сказать, что функция f(x) инвариантна относительно замены x на x .

Посмотрим на инвариантность в жизни?

Допустим у нас есть вот такое крутое уравнение:

x + y = 10

Как нетрудно заметить, решений у него бесконечно много. Это, например, пары чисел (1;9), (5;5), (0;10), (-37;47), ну и так далее, можно писать до посинения.) Зачем, спрашивается? Пока – незачем. Бестолковое занятие, прямо скажем. Но, поскольку, как мы знаем, от перестановки слагаемых сумма не меняется, все эти решения объединяет одна важная особенность: если какая-то пара чисел (x 0 ; y 0) удовлетворяет данному уравнению, то автоматически и пара чисел (y 0 ; x 0) также обязательно ему удовлетворяет. Или в таких случаях говорят, что уравнение

x + y=10

инвариантно относительно замены x на y и y на x . Например, если пара (1;9) – решение, то автоматически и (9;1) – тоже решение. Понятно, я думаю.)

Кто умеет решать системы и в курсе, как раскрываются модули, тот без труда получит восемь её решений. Это пары:

(1; 2), (2; 1), (-1; 2), (2; -1), (1; -2), (-2; 1), (-1; -2); (-2; -1).

Чем красива эта система? А тем, что она обладает сразу тремя типами инвариантностей!

Смотрите сами.

Во-первых, суть системы не изменится от замены x на y и y на x . Это значит, что, помимо пары (x 0 ; y 0), система имеет своим решением и пару (y 0 ; x 0). Например, это пары (1; 2) и (2; 1) или (-1; -2) и (-2; -1). И так далее.

Во-вторых, квадрат и модуль - чётные функции. Это значит, что суть системы не изменится от замены, например, x на . Поэтому, помимо пары (x 0 ; y 0) решением системы будет являться и пара (-x 0 ; y 0). Что выражается, например, парами (1; 2) и (-1; 2). Или (2; 1) и (-2; 1).

То же самое можно сказать и про переменную игрек: суть системы не изменяется от замены y на -y , так как квадрат и модуль сжигают минус. И, помимо пары (x 0 ; y 0), решением нашей системы будет и пара (x 0 ; -y 0). Например пары (1; 2) и (1; -2).

Идея ясна?

А теперь представим, что у нас есть какая-нибудь ооочень страшная система. И мы каким-то чудом установили, что эта система инвариантна относительно, скажем, замены x на y. При этом в задаче требуется, чтобы решение было единственным . Тогда обязательно должно выполняться равенство x = y . То есть, таким единственным решением может быть только пара чисел (x 0 ; x 0) (или (y 0 ; y 0), что в данном случае одно и то же).

И теперь во всей задаче мы всюду можем смело заменить игрек на икс (или наоборот) и перейти к одной переменной, что, скорее всего, сильно упростит дальнейшие выкладки.)

Или если в какой-то задаче аргумент x всюду стоит под знаком чётной функции – квадрата, модуля, косинуса и т.п., а при этом требуется, чтобы решение задачи было единственным , то это будет возможно только в случае, когда

x = - x ,

То есть,

x = 0 .

Почему? Да потому, что при всех остальных x, отличных от нуля, число –x автоматически тоже будет решением, т.е. задача заведомо будет иметь более одного решения . И теперь можно подставить x = 0 в исходную задачу и существенно упростить её. Таким образом, в случае чётности имеет место так называемая симметрия относительно нуля .

Но симметрия бывает не только относительно нуля. Если, скажем, уравнение не меняется относительно замены x на 2- x и должно иметь единственный корень, то обязательно должно выполняться равенство

x = 2 – x

Или

x = 1.

То есть, этим единственным корнем может быть только единица. И теперьуже можно подставить x = 1 в исходное уравнение и определить все значения параметра, при которых единица является корнем.

А бывают и менее очевидные инвариантности. Например, относительно замены x на 1/x, откуда кандидатами на единственное решение могут быть только числа ±1. И так далее. Поиск таких закономерностей – порой процесс творческий и весьма интересный, и задачи такого типа предназначены для претендентов на высокие баллы.)

Сам процесс решения таких задач состоит из четырёх ключевых шагов.

1) Осмотр задачи и выявление инвариантных конструкций. Например, выражения x и -x , y и y-1 и т.п.

2) Нахождение решений-кандидатов на единственность. Делается это путём приравнивания этих самых инвариантных конструкций друг другу и решения получившегося уравнения.

3) Подстановка решений-кандидатов в исходную задачу и поиск соответствующих этим решениям значений параметра.

4) Проверка каждого найденных значений параметра на удовлетворение условий задачи.

Четвёртый шаг очень (ОЧЕНЬ! ) важен в решении таких задач! Пояснения - ниже. На примерах.

Ну ладно, длинное вступительное повествование закончено, перейдём теперь к конкретным задачам (в т.ч. и из ЕГЭ) и будем решать их по мере возрастания сложности. Начнём с малого - с уравнений. :)

Пример 1

Итак, речь идёт о единственном корне. Это явный призыв поискать в уравнении инвариантные конструкции.)

От икса зависит только левая часть. Выпишем её отдельно:

3 х + 3 2-х .

А теперь рассуждаем примерно так:

«У нас слева стоит сумма двух показательных выражений. Основания у них одинаковые – тройка. Что очень хорошо.) А вот показатели – разные. «Икс» и «два минус икс». Но! Если в первом слагаемом показатель х заменить на 2-х , а во втором – наоборот, 2-х заменить на х , то слагаемые просто поменяются местами, а суть всего выражения при этом не изменится.»

Совершенно верно! Данное уравнение инвариантно относительно замены х на 2-х ! Другими словами, если какое-то число х 0 является корнем этого уравнения, то автоматически и число 2-х 0 также будет его корнем.)

У нас же, по условию, корень должен быть единственным. Поэтому это возможно в том и только в том случае, когда

х 0 = 2-х 0

Или

Х 0 = 1.

Здесь выявлена так называемая симметрия относительно единицы .

Это означает, что если данное уравнение имеет единственный корень, то им может быть только единица . И теперь уже можно подставить х = 1 в исходное уравнение и определить, при каких же значениях параметра а оно будет выполняться. Подставляем:

Решаем данное квадратное уравнение. Проще всего по теореме Виета:

Получили два значения параметра – единицу и пятёрку. Но (внимание!) это пока что ещё не ответ , а лишь два возможных кандидата на ответ.) Теперь нам ещё предстоит сделать последний шаг - проверить каждое значение параметра а на выполнение условия единственности корня.

Специально акцентирую внимание на этом последнем шаге решения. Пропускать его ни в коем случае нельзя. Почему?

Казалось бы, всё классно: параметры найдены, и на этом решение задачи следовало бы закончить и записать ответ. Но… Вынужден открыть горькую правду. Всё дело в том, что найденные на третьем шаге значения параметра представляют собой лишь так называемое необходимое условие единственности решения. Но, к сожалению, не достаточное! Поясняю.

Найденные два числа (1 и 5) - это значения параметра, необходимые для того, чтобы единица только лишь была корнем данного уравнения . И всё! Единственный это корень будет или нет – совершенно не факт!

Поэтому последним (и обязательным!) шагом решения является проверка достаточности . Делается это так. Берётся каждое из найденных значений параметра и подставляется в исходную задачу. После чего решаем исходную задачу для каждого такого кандидата и устанавливаем, сколько решений в каждом случае получается. Тех кандидатов, при которых задача имеет более одного решения, безжалостно отсеиваем.)

Следует сказать, что последний шаг в подобных задачах зачастую наиболее трудоёмкий, потому что далеко не всегда при этом получаются уравнения и системы, решаемые стандартными алгебраическими преобразованиями – разложением на множители, приведением подобных, формулами тригонометрии, логарифмов и т.п. А требующие порой значительной изобретательности и искусства, я бы даже сказал. В чём мы лично убедимся на дальнейших примерах.)

Поэтому берём сейчас наши найденные значения параметра и подставляем в исходное уравнение .

Начнём с а = 1 . Просто берём и подставляем в уравнение уже вместо «а » (а не икс!) единичку:

По правилам действий со степенями:

Перепишем наше уравнение с учётом данного факта:

Умножим обе части на знаменатель 3 х (это вполне безобидно, поскольку выражение 3 х положительно при любом x и никогда не равно нулю) и перенесём всё влево:

Получили квадратное уравнение относительно 3 х .

Здесь даже не нужно делать замену 3 х = t , а достаточно заметить, что слева стоит полный квадрат разности:

Значит,

Итак, при a = 1 исходное уравнение действительно имеет своим единственным корнем единицу. Значит, a = 1 нас полностью устраивает и идёт в ответ.

Теперь разбираемся с пятёркой a = 5 . Берём и подставляем в исходное уравнение пятёрку вместо a:

Получили уравнение, в точности эквивалентное случаю a = 1 , имеющее, как уже установлено, единственный корень единицу. Значит, пятёрка нас также устраивает: a = 5 .

Итак, мы полностью обосновали, что оба найденных значения параметра удовлетворяют условию достаточности, т.е. исходное уравнение действительно имеет единственный корень, и этот корень x = 1. И вот теперь можно с чистой совестью записывать окончательный ответ.)

Ответ: a=1; a=5 .

Кстати, эту же задачу можно, конечно же, решить и через упомянутую выше замену переменной 3 х = t , выйти на квадратное (уже относительно t) уравнение с параметром и составить условие единственности корня. Какое? Конечно же, равенство нулю дискриминанта. ) Но, поскольку темой данного урока является инвариантность , то и решили мы её, используя именно инвариантность.) Всё же хорошо иметь несколько способов решения одной и той же задачи, согласитесь.)

Здесь проверка достаточности никак не сказалась на ответе. Повезло, хороший пример.) Но, ещё раз повторю, что этот шаг является обязательной частью решения таких задач. На примерах ниже мы воочию в этом убедимся.)

Пример 2

Здесь в нагрузку добавились ненавистные многими модули, но и мы тоже поднялись на следующий уровень.) Поскольку в задаче снова речь идёт о единственном корне, поищем инвариантности. Замечаем, что икс везде стоит внутри чётных функций – либо под модулем, либо в квадрате.

Напрашивается чётность. То есть, инвариантность относительно х и –х.)

Ну, с x 2 всё ясно – тут чётность очевидна. А вот с суммой модулей, стоящей в правой части, всё не так очевидно. Попробуем в выражение

Вместо «икс» подставить «минус икс» и посмотрим, что из этого выйдет:

Как известно, модуль – тоже функция чётная и «сжигает» минус:

Итак, что мы видим? Мы видим, что от замены x на –x правая часть уравнения также не изменилась (просто модули поменялись местами:)). А это значит, что уравнение действительно инвариантно относительно х и –х . И, если оно имеет какой-то корень х 0 , то и число –х 0 автоматически также будет корнем этого уравнения.

Поэтому для единственности эти два корня должны совпадать , т.е. необходимо выполнение условия

Значит, если данное уравнение имеет единственный корень, то им может быть только ноль. Подставляем число 0 в исходное уравнение вместо икса:

Для дальнейших упрощений воспользуемся чётностью квадрата и модуля:

Перепишем наше уравнение с учётом этих фактов:

Выносим один модуль за скобку:

Итак, получены три кандидата на ответ. При этих значениях параметра a исходное уравнение обязательно будет иметь одним из своих корней число 0 . А вот будет ли число 0 единственным корнем или нет, нам и предстоит сейчас проверить. Проверяем теперь достаточность: устраиваем нашим кандидатам конкурсный отбор. :)

Порядок здесь роли не играет. Давайте начнём с четвёрки: a = 4 . Подставляем вместо а в исходное уравнение четвёрку:

Все четвёрки благополучно посокращались и осталось лишь:

x 2 = |x| + |x| или x 2 - 2|x| = 0

Снова заменяем x 2 на |x| 2 и выносим один модуль за скобку:

Произведение равно нулю, когда хотя бы один из множителей равен нулю:

Итак, что мы видим? Мы видим, что при a = 4 наше уравнение имеет не только корень x = 0 , но и ещё два корня – два и минус два! О чём это говорит? О том, что при a = 4 уравнение имеет более одного корня (а именно – целых три) . Стало быть, первый кандидат a = 4 не прошёл наш кастинг, поэтому с треском вылетает из дальнейшей борьбы и в ответ не идёт. :)

Эстафета передаётся следующему претенденту a = 6. Подставляем в наше уравнение шестёрку вместо параметра a . Получаем:

Получили типовое уравнение с модулями, решаемое путём раскрытия модулей по промежуткам. Предполагается, что народ, интересующийся нестандартными задачами с параметрами, решать такие уравнения уже умеет, поэтому здесь я опущу подробное описание решения этого уравнения (что, как, зачем и почему) и оформлю его достаточно сжато.

Как обычно, разбиваем числовую ось на промежутки, границами которых являются нули подмодульных выражений. В нашем случае это 2 и -2.

Раскроем модули на каждом промежутке и для наглядности подпишем их на рисунке.

1) x ≤ -2 . Оба модуля раскрываются со знаком «минус»:

Тогда имеем следующее:

Очевидно, левая часть положительна при любых икс, а значит, данное уравнение действительных корней не имеет. Итак, на интервале (-∞; -2] корней у нашего уравнения нет.

2) -2 < x < 2 . В этом случае первый модуль раскрывается по-прежнему с минусом, а вот второй - уже с плюсом:

В этом случае наше уравнение станет таким:

Ноль принадлежит рассматриваемому интервалу (-2; 2) и, стало быть, является первым корнем нашего уравнения.

И, наконец, на очереди третий случай.

3) x ≥ 2 . В этом случае оба модуля раскрываются с плюсом:

Тогда

Понятно, что левая часть всегда положительна, а значит, как и в первом случае, корней при x ≥ 2 у нашего уравнения также нет.

Итак, все случаи разобраны, и единственным корнем нашего уравнения является x = 0 .

А теперь вспоминаем, что это уравнение мы получили и решили для a = 6 . А это значит, что при a = 6 исходное уравнение действительно имеет единственный корень x = 0, а других корней, кроме нуля, не имеет (мы только что это доказали). Всё, a = 6 нас полностью устраивает, и шестёрка пошла прямиком в ответ.)

Третий пошёл!) Подставляем теперь a = 2 :

Кандидата a = 2 можно сразу принять на работу в ответ без предварительного собеседования решения полученного уравнения. Почему? А потому, что, если взглянуть на получившееся уравнение, то можно увидеть, что оно отличается от уравнения, полученного для a = 6 только порядком слагаемых в правой части. То есть, по своей сути – ничем .) И, ясное дело, оно также имеет своим единственным корнем число 0.

Итак, a = 2 тоже подходит.)

Всё, задача полностью решена! :)

Ответ: a = 2; a = 6.

Так, с уравнениями более-менее потренировались. Двигаемся на следующий уровень и переходим теперь к системам.)

Пример 3


«Так-с… Модуль, тригонометрия – всё намешано в одну кучу, что как-то не особо обнадёживает. Можно, конечно, напрямую выразить из первого уравнения игрек

и подставить во второе, только что это даст? Всю эту белиберду ведь ещё и в квадрат возводить придётся!

Ну, хорошо. Подставляем теперь всё это барахло во второе уравнение вместо «игрек квадрат»:

И что тут можно сделать? О-па! Да тут же основное тригонометрическое тождество sin 2 x + cos 2 x = 1 , которое можно сократить с единичкой справа.)

Останется:

Ну, а потом что? Можно левую часть разложить на множители, отправив, к примеру, одну из скобок за скобки (да простит меня русский язык за тавтологию). Но что-то уж больно запутанно получается… Не факт, что удастся добраться до истины, совсем не факт… Стоп! Но у нас же говорится о единственном решении! А может, тут тоже есть что-то симметричное или инвариантное, что сделает решение куда проще?»

Немного присмотревшись к системе, можно снова заметить, что икс везде тусуется внутри чётных функций – модуль, косинус, квадрат синуса....

А это означает, что вместе с какой-то парой (x 0 ; y 0) данная система автоматически будет иметь своим решением и пару (-x 0 ; y 0) . Что при требовании единственности решения означает, что

Получили два необходимых значения параметра a . Необходимых для чего? Для того, чтобы пара чисел (0; y 0 ) была решением нашей системы . И не более того. Сколько этих решений окажется на самом деле, ещё непонятно. Что ж, снова тестируем наших кандидатов, подставляя каждого в исходную систему.)

Итак, проверяем a = 0 .

Ну,и что тут видно? Видно, что второе уравнение, после подстановки в него y = -cos x из первого уравнения, благополучно превратилось в основное тригонометрическое тождество , верное при любых значениях икса. О чём это говорит? Да! Система имеет бесконечно много решений : какой бы икс мы ни взяли, по нему всегда можно будет определить игрек из первого уравнения, а второе уравнение будет выполняться автоматически. Это значит, что при a = 0 наша система имеет бесконечно много решений . То есть, a = 0 нас заведомо не устраивает . Отметаем этого кандидата.)

Следующий клиент, a = 2 .

Здесь уже так просто не выкрутиться (а я предупреждал, что проверка достаточности – очень часто самая сложная часть решения задач). В таких нестандартных ситуациях, когда в уравнении слева и справа стоят какие-то разнородные (и обычно ограниченные) конструкции (в нашем случае это модуль и косинус), чаще всего применяется метод оценок или, более научно и красиво, метод мажорант . Что ж попробуем оценить каждое из уравнений.

Ну, во-первых, про модуль мы знаем, что он всегда неотрицателен :

Значит, про левую часть первого уравнения можно сказать следующее:

Итак, левая часть первого уравнения в любом случае не меньше двойки .

Что ещё в первом уравнении можно оценить? Ну, очевидно, косинус:

.

А вот всю правую часть первого уравнения мы пока оценить не можем: у нас ещё нет никакого ограничения на игрек. Ничего, сейчас получим.)

Для этого переключимся на второе уравнение:

Смотрим на него и прикидываем: слева стоит сумма квадратов – двух неотрицательных слагаемых. И эта сумма квадратов даёт единицу.

А теперь подумаем: какие такие два неотрицательных числа в сумме могут давать единицу? Как нетрудно догадаться, это могут быть либо какие-то дроби от нуля до единицы (например, 0,5 или 1/3), либо же когда одно из слагаемых равно в точности нулю, а другое – в точности единице. Значит, по-любому

0 ≤ sin 2 x ≤ 1 и 0 ≤ y 2 ≤ 1 .

Раз 0 ≤ y 2 ≤ 1 , то тогда про сам игрек можно сказать, что -1 ≤ y ≤ 1 .

Итак, мы установили ограничения на косинус и на игрек. Они таковы:

-1 ≤ cos x ≤ 1 ;

-1 ≤ y ≤ 1 .

А это значит, что их сумма (т.е. вся правая часть первого уравнения) ограничена вот так:

-2 ≤ y + cos x ≤ 2 .

А теперь смотрим на первое уравнение системы

И на наши ограничения.

Для левой части: 2(|x|+1) ≥ 2 , т.е. левая часть не меньше двойки .

Для правой части: -2 ≤ y + cos x ≤ 2 , т.е. правая часть не больше двойки .

Как вы думаете, когда возможно равенство обеих частей уравнения? Да! Когда каждая из них одновременно в точности равна двойке !

Значит, первое уравнение системы распадается на два условия:

Вместе со вторым уравнением системы получим:

Нетрудно убедиться (а это достаточно просто), что единственным решением этой системы (а значит, и исходной) является пара чисел (0; 1). Это значит, что значение параметра a = 2 нас полностью устраивает. Всё, задача полностью решена, можно записывать окончательный ответ.

Ответ: a = 2.

Кстати, стандартный способ подстановки (размышления синим цветом в самом начале решения этого примера), который был нами прерван, здесь со скрипом, но тоже действует.) Кому интересно, попробуйте довести решение до конца, продолжив разложение на множители и приравняв каждый к нулю. :) А вот следующий пример уже куда серьёзнее будет.

Пример 4


Уже при первом взгляде на систему видно, что ничего никуда не преобразуется, переменные друг через друга «красиво» не выражаются – ни y через x , ни x через y . Значит, стандартные приёмы не катят. Но! Переменная икс у нас снова везде стоит под модулем или в квадрате, т.е. под чётными функциями! А это означает, что единственным решением данной системы может быть только пара вида (0; y 0 ) . Почему это именно так, объяснять, думаю, уже не нужно.) Если всё же непонятно, просмотрите ещё раз хотя бы предыдущий пример.

При подстановке x = 0 вся наша термоядерная система существенно упрощается:

Если y = 1 , то: Если y = -1 , то:

3 = 5·1 - 5a 3 = 5·(-1) - 5a

5a = 2 5a = -8

a = 2/5 a = -8/5

Итак, наши кандидаты – это две пятых и минус восемь пятых. Всего два.) Это - необходимые значения параметра «a » для того, чтобы пара (0; y ) была одним из решений исходной системы . Теперь, как водится, проверяем достаточность, т.е. чтобы наша пара (0; y) была не просто одним из решений системы, а единственным её решением.

Поехали, подставляем в систему a = 2/5. В этом случае вся система примет вид:

В первом уравнении я, во-первых, сократил двойки, а во-вторых, все члены с пятёркой собрал слева, а с тройкой – справа. Зачем – станет ясно ниже.)

«Перед нами страшная система, которую как-то необходимо решить . Точнее не столько решить, сколько выяснить, сколько именно решений она имеет – единственное или нет. Или, возможно, вообще не имеет решений.) Но есть одна проблемка. Как к ней подступиться?

Если традиционно выразить y через x из второго уравнения, то будет

И что потом с этим плюс/минусом делать?! Непонятно…

А если выразить игрек из первого уравнения? Тогда вообще кошмар получится:

А если икс через игрек из второго? Тоже не фонтан. Значит, стандартные приёмы здесь явно не работают. Так… Но у нас в обоих уравнениях фигурируют модули и квадраты – ограниченные (снизу) конструкции. А что, если попробовать оценить левую и правую части первого (самого страшного) уравнения?»

Верные мысли! Итак, наша цель на данный момент – оценить обе части первого уравнения. Затяните потуже ремни на брюках, поскольку сейчас нам предстоит решать много неравенств . Точнее, не столько решать, сколько их выписывать, складывать, преобразовывать и т.д. Итак, перед оцениваем первое уравнение:

Но для начала обратим наш взор на второе уравнение:

Снова, как и в примере 3 , видим сумму квадратов, равную единице. О чём это говорит? О том, что каждый из этих квадратов сам по себе не превосходит 1 .

То есть, 0 x 2 ≤ 1 и 0 y 2 ≤ 1 .

То же самое можно сказать и про модули икса и игрека:

0 ≤ |x| ≤ 1 и 0 ≤ |y| ≤ 1 .

Поэтому про сами x и y можно сказать, что -1 ≤ x ≤ 1 и -1 ≤ y ≤ 1 .

А теперь с помощью данных неравенств оцениваем левую часть первого уравнения, равную сумме выражений 5·2 |x| и -5y:

Раз 0 ≤ |x| ≤ 1 , то 2 0 ≤ 2 |x| ≤ 2 1 или 1 ≤ 2 |x| ≤ 2 .

Здесь мы воспользовались монотонным возрастанием функции f(x) = 2 x .

Если теперь все три части последнего неравенства помножить на 5, то получим:

2 ≤ 5·2 |x| ≤ 10

-1 ≤ 5y ≤ 1

И, следовательно,

-5 ≤ -5y ≤ 5 .

Возможно, кому-то непонятно, как именно из неравенства -1 ≤ 5y ≤ 1 получилось неравенство -1 ≤ -5y ≤ 1 . Поясняю.

-1 ≤ 5y ≤ 1 |·(-1) (умножаем обе части на -1);

1 ≥ -5y ≥ -1 (все знаки изменились на противоположные);

-5 ≤ -5y ≤ 5 (переписываем неравенство в привычной форме).

Всё!

Итак, мы установили ограничения на выражения 5 ·2 |x| и -5y:

2 ≤ 5·2 |x| ≤ 10

-5 ≤ -5y ≤ 5

Теперь, сложив почленно эти два неравенства, получим ограничение на всю левую часть целиком:

Запомним этот факт.) Обратимся теперь к правой части уравнения: 3x 2 - 3|x| .

А вот её будем оценивать немного иначе.

Как нами уже установлено, 0 x 2 ≤ 1 .

x 2 ≤ |x| при 0 ≤ |x| ≤ 1 .

Откуда я его взял? Как фокусник из рукава вытащил?)

Чтобы разобраться, почему это именно так, нарисуем графики модуля («уголок») и параболы у = x 2 . На отрезке [-1; 1] картинка будет вот такой:

Видно, что на отрезке [-1; 1] «уголок» везде, кроме точек 0 и ±1 лежит выше параболы.

Итак, x 2 ≤ |x| при 0 ≤ |x| ≤ 1 .

Тогда x 2 - |x| ≤ 0 (я просто перенёс модуль влево).

Значит, если это неравенство умножить на 3, то получим:

Таким образом, вся правая часть не больше нуля .

А теперь вспоминаем, что же у нас с левой частью:

Таким образом, левая часть не меньше нуля .

Значит, равенство левой и правой частей возможно лишь в одном случае – когда каждая из них отдельно равна нулю :

Решаем эту системку.)


Отсюда легко получаем три пары: (0; 1), (-1; 2), (1; 2).

Однако, решения этой системы – это на самом деле лишь решения первого уравнения нашей глобальной системы.) Вспоминаем про её второе уравнение: x 2 + y 2 = 1 .

Нетрудно убедиться, что из этих трёх пар ему удовлетворяет лишь пара (0; 1). А что это означает? В дебрях долгих выкладок и рассуждений, неволей, и про основной вопрос забываешь…) Да! При a = 2/5 наша исходная система и вправду имеет единственное решение .

Всё, a = 2/5 обводим как часть ответа.)

А что же с a = -8/5 ? Делать нечего, подставляем его в нашу систему:

А вот здесь так красиво провести оценку уже не получится: десятка справа всё испортила.(Как быть? В таких ситуациях, как правило, приходится прибегать к самой крайней мере – попытаться тупо подбором угадать два каких-нибудь решения и таким образом доказать, что система имеет более одного решения .) Как угадывать? Ну, тут уже всё от конкретного задания зависит. И немного от интуиции и иногда от везения. В нашем случае попробуем зацепиться за второе уравнение:

x 2 + y 2 = 1 .

Понадеемся на гуманизм составителей задания и начнём с самого простого - поищем какие-нибудь целые решения этого уравнения и подставим их в первое. Их совсем немного. Ну, например, (1; 0):

Что ещё можно проверить? Ха! У нас же симметрия по икс! Мы же как раз этот факт использовали для решения всей задачи! И думать не надо – тут же всплывает решение (-1; 0)!

Всё! Мы подобрали два различных решения системы, а это значит, что второе значение параметра a = -8/5 нас точно не устраивает . Всё, задача решена! :)

Ответ: a = 2/5 .

Что ж, мы уже набрались достаточно опыта, чтобы рассмотреть какую-нибудь откровенную жесть. Берём быка за рога! :)

Пример 5


Ничего не боимся и стараемся при виде подобных монстров мыслить примерно следующим образом:

«Ух, наворотили, ужас! Корень, тангенс, синусы… Точно не решить… Так, стоп! От нас хотят найти единственное решение. Значит, скорее всего, нас просят отыскать какую-нибудь инвариантную конструкцию и с её помощью решить всю задачу.

Что тут сильнее всего бросается в глаза? Ну, во-первых, во втором и третьем уравнениях везде тусуются xy и x+y , а от перестановки множителей (слагаемых) результат не меняется. Это неспроста.) Так, ещё тут внутри косинуса затесалась разность x-y , которая от перемены икса и игрека местами сменит знак:

y-x = -(x-y).

Плохо… Так, секундочку! Но ведь косинус - чётная функция и сжигает минус! Всё отлично, под косинусом тоже ничего не поменяется!)

Но есть ещё первое уравнение. В нём пока что никакой инвариантностью относительно перестановки икса и игрека и не пахнет. А вдруг, эту инвариантность и там удастся выявить? Ну-ка, посмотрим…

И что тут можно сделать? Можно хотя бы пораскрывать все скобки:

Вставляем всё в уравнение:

Кажется, уже что-то вырисовывается:

Ну, вот и выявилось то, чего мы так добивались: x 2 +y 2 и x+y – инвариантные конструкции. Относительно замены x на y и y на x . Ура!»

Итак, вся система инвариантна относительно замены x на y (и наоборот). Это значит, что, если какая-то тройка чисел (x; y; z) является решением этой злой системы, то автоматически и тройка (y; x; z) также будет её решением! И единственность решения системы возможна только при x = y . Теперь можно во всей системе смело исключить игрек , заменив его на икс: xy превратится в x 2 , x+y превратится в 2x. Ну, и так далее.)


Так, система стала немного попроще, но ещё пока что довольно громоздка. Но… Переменная z везде тусуется под чётными функциями - либо в квадрате, либо внутри синуса в квадрате. А это значит, что единственность решения возможна только при z = 0 . Прекрасно! Подставляем всюду ноль вместо z, и вся наша ужасная система ещё больше упростится и станет выглядеть вот так:

Из второго уравнения сразу ясно, что х = 0 . Третье уравнение при х = 0 , очевидно, выполняется. А из первого уравнения при х = 0 получим:

2a + 4 = 0, откуда a = -2 .

Ух ты, как интересно! Получено одно единственное допустимое значение параметра. Минус два. Но радоваться рано, т.к. это ещё не ответ: нам же ещё достаточность надо проверить (да-да!). Деваться некуда, подставляем минус двойку в исходную систему вместо «а»:

По максимуму упрощаем каждое из уравнений. В первом раскроем все скобки:

Во втором уравнении благополучно обнуляется самое ужасное слагаемое с корнем, сокращается двойка, оставшаяся от первой скобки, и остаётся лишь

Ну, а третье уравнение так и оставим, без изменений. Итого:

А теперь делаем такой финт ушами – подставляем в первое уравнение вместо x + y выражение 2sin 2 z из второго. Что получим:

Проанализируем полученное уравнение. Чем оно примечательно? Тем, что слева стоит сумма каких-то квадратов, т.е. неотрицательных слагаемых! А когда возможно равенство нулю суммы неотрицательных слагаемых ? Только в одном единственном случае – когда одновременно каждое слагаемое равно нулю ! То есть:

Итак, единственным решением первого уравнения является тройка чисел (0; 0; 0). Проверим эту тройку и по остальным уравнениям: вдруг, она там не пройдёт? Тогда ответом, очевидно, будет пустое множество.)

Все равенства выполнены. Итак, мы полностью обосновали, что при a = -2 наша система действительно имеет единственное решение, и это решение – «три бублика», т.е. (0; 0; 0).

Вот и всё! :)

Ответ: a = -2.

Разумеется, эти рассмотренные пять примеров далеко не исчерпывают всего многообразия параметрических задач на единственное решение и инвариантность.) Но в них я постарался максимально подробно и доходчиво изложить, как действовать в ситуации, если, вдруг, где-то (в пробнике или в настоящем ЕГЭ) вам попалась подобная задача. Итак, подытожим тему:

1) Как только видим словосочетание «единственный корень/единственное решение» - пробуем искать инвариантные конструкции или приходить к таковым путём предварительных преобразований. Чаще всего это чётность, симметрия относительно какого-нибудь числа , либо относительно перестановок (замен) переменных или выражений.

2) Выявив тип инвариантности, составляем необходимое условие единственности решения и ищем допустимые (необходимые) значения параметра. Как правило, вся задача при этом существенно упрощается, и их поиск не составляет особого труда.

3) Проверяем найденные допустимые значения параметра на достаточность . В случае, если получаемая задача не решается стандартными методами, применяем специальные приёмы – ограниченность, монотонность и т.п. Если и они не помогают – пробуем подобрать корень или решение. Чаще всего они лежат на поверхности и, как правило, являются целыми числами.

4) Не боимся. Пробуем различные варианты.) И побольше тренируемся.) Только так можно выработать необходимый опыт в решении таких (да и вообще любых) задач с параметрами.

Всем успехов и до новых встреч!

Второй метод дискретизации аналоговых фильтров называется методом инвариантного преобразования импульсной характеристики. Отличительной особенностью этого метода является то, что в качестве импульсной характеристики рассчитываемого цифрового фильтра используется дискретизованная импульсная характеристика соответствующего аналогового фильтра. В результате частотная характеристика цифрового фильтра образуется путем наложений частотной характеристики дискретизованного аналогового фильтра.

Для того чтобы продемонстрировать метод дискретизации аналогового фильтра с использованием инвариантного преобразования его импульсной характеристики, разложим передаточную функцию этого фильтра (4.19) на простые дроби:

, (4.45)

причем каждый коэффициент определяет положение -гo полюса. При записи разложения (4.44) предполагалось, что порядок числителя меньше порядка знаменателя и что все полюсы простые. Предположение о том, что , обязательно должно выполняться для дискретизуемого фильтра, поскольку в противном случае наложения в частотной характеристике цифрового фильтра станут недопустимыми. Если же не все полюсы простые, то результаты, которые будут получены в настоящем разделе, следует несколько модифицировать.

Импульсная характеристика аналогового фильтра с передаточной функцией вида (4.44) описывается соотношением

. (4.46)

Дискретизуя ее, получим импульсную характеристику цифрового фильтра

(4.47)

где - период дискретизации. Найдем ее z-преобразование

(4.48)

Изменив порядок суммирования и просуммировав по , получим

(4.49)

Сравним формулы (4.49) и (4.44). Видно, что для простых полюсов переход от к осуществляется с помощью отображения, при котором используется замена

. (4.50)

Если полюсы комплексные, то остатки в (4.44) также будут комплексными. Функция действительная, поэтому должны существовать также комплексно сопряженные полюс и остаток . Просуммируем эти комплексно сопряженные члены в (4.44):

. (4.51)

Положив и , получим

. (4.52)

Использование отображающей замены (4.50) применительно к каждому слагаемому в формуле (4.51) дает

. (4.54)

Из формул (4.52) и (4.54) получаем

(индекс здесь опущен, а числители поделены на ).

Приведем два полезных частных случая этой отображающей замены, соответствующих аналоговым фильтрам с импульсными характеристиками и :

Выше было отмечено, что частотная характеристика цифрового фильтра, рассчитываемого методом инвариантного преобразования импульсной характеристики, образуется путем наложений частотной характеристики дискретизуемого аналогового фильтра. Таким образом, можно записать

, (4.58)

где - угловая частота дискретизации цифрового фильтра.

Фиг. 4.7. Отображение из s-плоскости в г- плоскость для метода инвариантного преобразования импульсной характеристики.

На фиг. 4.7 показало соответствующее инвариантному преобразованию импульсной характеристики отображение из s-плоскости в z-плоскость. Каждая горизонтальная полоса шириной из -плоскости отображается па z-плоскость. Поэтому все смежные полосы из s-плоскости будут при отображении накладываться друг па друга в z-плоскости. Отсюда следует, что для того, чтобы частотные характеристики исходного аналогового фильтра и рассчитываемого методом инвариантного преобразования импульсной характеристики цифрового фильтра соответствовали друг другу, необходимо, чтобы полоса пропускания аналогового фильтра находилась в пределах диапазона . Для выполнения этого условия необходимо до начала преобразования вводить дополнительный фильтр нижних частот, гарантирующий соответствующее ограничение полосы пропускания аналогового фильтра.

Пример инвариантного преобразования импульсной характеристики. Для иллюстрации этого метода дискретизуем аналоговый фильтр с передаточной функцией вида

Непосредственное использование отображающей замены (4.50) дает

Фиг. 4.8. Амплитудная и фазовая характеристики аналогового фильтра.

Частотная характеристика аналогового фильтра определяется соотношением

.

На фиг. 4.8 представлены амплитудная и фазовая характеристики этого фильтра. Характеристики соответствующего цифрового фильтра для разных значений периода дискретизации изображены на фиг. 4.9. Ясно, что при уменьшении (т. е. при увеличении частоты дискретизации ) эффекты наложения могут оказаться пренебрежимо малыми и частотные характеристики аналогового и цифрового фильтров станут похожими друг на друга.

Метод инвариантности

Метод инвариантности состоит в том, что в средстве измерений помимо измерительной цепи (канала) имеется сравнительная цепь (канал), к которой не подается входной сигнал, но которая, как и измерительная цепь, находится под воздействием некоторой влияющей величины. Причем параметры сравнительной цепи подобраны так, что изменение ее сигнала под действием влияющей величины идентично изменению сигнала измерительной цепи под действием этой величины, т. е. возмущения, вызванные влияющей величиной, поступают в средство измерений по двум каналам (принцип двухканальности). Использование разности сигналов измерительной и сравнительной цепей (при дифференциальном включении этих цепей) обеспечивает независимость (инвариантность) результирующего сигнала от названной влияющей величины, т. е. метод обеспечивает исключение дополнительной погрешности, вызванной изменениями некоторой, как правило, основной влияющей величины.

Метод прямого хода

Метод прямого хода состоит в том, что измеряемый сигнал поступает к чувствительному элементу средства измерений через ключ, с помощью которого осуществляется периодическое во времени отключение измеряемого сигнала от чувствительного элемента и подача к последнему сигнала, значение которого равно нулю. Это обеспечивает работу средства измерений на восходящей ветви (прямой ход) статической характеристики при всех значениях измеряемого сигнала, что исключает наиболее существенную погрешность многих средств измерений - погрешность от вариации.

Метод вспомогательных измерений

Метод вспомогательных измерений заключается в автоматизации процесса учета дополнительной погрешности средства измерений по известным функциям влияния ряда влияющих величин. Для этого осуществляется измерение значений этих величин и с помощью вычислительного устройства, построенного с учетом названных функций влияния, автоматически корректируется выходной сигнал средства измерений.

Метод обратного преобразования

Метод обратного преобразования (итерационный метод) базируется на использовании дополнительно в составе средства измерений кроме прямой измерительной цепи (прямого преобразователя), цепи, способной осуществлять обратное преобразование выходного сигнала (обратный преобразователь), имеющей существенно большую точность, чем цепь прямого преобразования. Результат измерения получают путем итераций. В процессе каждой итерации последовательно осуществляются: прямое преобразование измеряемой величины и запоминание результата, обратное преобразование запомненного значения этой величины, прямое преобразование сигнала обратного преобразователя, соответствующего запомненному значению измеряемой величины, и сравнение результатов этих двух преобразований, на основе которого формируется корректирующий сигнал. Обратный преобразователь в данном методе играет роль как бы многозначной меры, по которой корректируется статическая характеристика прямого преобразователя. Метод обратного преобразования позволяет уменьшать в зависимости от используемого алгоритма коррекции аддитивную и мультипликативную погрешности средств измерений.

Муниципальное бюджетное общеобразовательное учреждение гимназия № 9

ЭКСПЕРИМЕНТАЛЬНО-РЕФЕРАТИВНЫЙ ПРОЕКТ

по теме:

Применение метода инвариантов при решении задач ЕГЭ и олимпиадных задач

Выполнила:

ученица XI «Б» класса

Тищенко Элина

Научный руководитель:

учитель математики

Хатунцева

Ирина Владимировна

Воронеж – 2017

Содежание

Введение

В современной математике важную роль играет понятие инвариантности, т.е. неизменность математического объекта. Очень многие определения математики фактически связаны с этим понятием, хотя сам термин инвариантности в учебниках отсутствует.

Пример: четная функция f(x) с областью определения R инвариантна, т.к. f(x)= f(-x).

Наличие того или иного свойства инвариантности у математического объекта позволяет установить некоторые общие качественные свойства этого объекта.

Цель данной работы - показать применение метода инвариантов при решении задач ЕГЭ и олимпиадных задач.

Этой теме посвящено много литературы издательств ведущих ВУЗов страны, таких как МГУ и МФТИ. Классической книгой по теории инвариантов является книга выдающегося немецкого математика Герлеана Вейля. А студентами Оксфордского Университета издается ежегодный журнал "The Invariant".

Эта тема представляется очень актуальной, т.к. метод инвариантов позволяет довольно просто решать задачи повышенного уровня сложности.

Глава 1. Применение метода инварианто в при решении олимпиадных задач

В качестве инварианта чаще всего рассматриваются четность (нечетность), остаток от деления, перестановки, раскраски и т.д.

Применение четности – одна из наиболее часто встречающихся идей при решении олимпиадных задач. Сформулируем наиболее важные утверждения, на которых основано применение этой идеи:

    четность суммы нескольких целых чисел совпадает с четностью количества нечетных слагаемых;

    знак произведения нескольких (отличных от нуля) чисел определяется четностью количества отрицательных сомножителей.

Задача 1.

На доске написано десять плюсов и пятнадцать минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения двадцати четырех таких операций?

Решение.

Заменим каждый плюс числом 1 , а каждый минус числом -1 .

Тогда мы стираем любые два числа и записываем их произведение. Поэтому произведение всех написанных на доске чисел останется неизменным.

Так как произведение изначально было отрицательным (15 отрицательных чисел), то и в конце оно останется отрицательным .

Ответ: минус.

Задача 2.

Мальчик получил двойку за контрольную работу по математике и в порыве отчаяния разорвал листок со своей работой на десять кусков. Затем один из получившихся кусков он разорвал еще на 10 кусков. Может ли по завершении релаксации оказаться 2015 кусков бумаги?

Решение.

Каждый раз при разрывании одного куска бумаги на 10, мальчик увеличивает общее количество кусков бумаги на 9. После первого разрывания у него будет 1+9=10 кусков, после второго – 10+9=19 кусков и т.д. Т.е., количество кусков бумаги на n-ном разрывании находится по формуле 1+9 n .

Проверим, представимо ли число 2015 в виде 1+9 n :

1+9 n =2015;

9 n =2014.

2014 не делится на 9 без остатка, следовательно, 2015 кусков по завершении релаксации оказаться не может.

Ответ: нет

Задача 3.

На доске записаны числа от 1 до 1998. Разрешается за один ход стирать любые два числа и вместо них записывать их разность, пока не останется одно число. Может ли это число быть нулем?

Решение.

Рассмотрим сумму всех чисел, записанных на доске до и после одного шага. Пусть мы стерли числа a , b . Тогда сначала сумма всех чисел была равна , а потом , где S – сумма всех остальных чисел. Как видим, замена (a + b ) на ( a - b ) не меняет четности суммы всех чисел. Сумма чисел в самом начале есть нечетное число (
), значит, на каждом шаге сумма записанных на доске чисел будет нечетна. Ноль – четное число, поэтому получить его на доске мы не можем.

Ответ: нет.

Задача 4.

Каждая клетка квадратной таблицы 2*2 закрашена в черный или белый цвет, как показано на рисунке ниже. За один ход можно перекрасить клетки в любой строке, в любом столбце или в любой диагонали: черные – в белый цвет, а белые – в черный. Можно ли через несколько ходов получить таблицу, все клетки которой белые?

Решение.

Сопоставим каждой клетке 1, если она покрашена в белый цвет, и -1, если она покрашена в черный цвет. Тогда смена цветов означает смену знаков. Рассмотрим произведение всех чисел, соответствующих клеткам. Так как при перекрашивании мы изменяем знаки ровно у двух сомножителей, то произведение всех четырех чисел не изменяется. В самом начале это произведение равно -1. Требуемой раскраске соответствует произведение, равное 1. Следовательно, указанными операциями перекрасить таблицу невозможно.

Ответ: нет.

Задача 5.

В трех кучках лежат 1, 9 и 98 камней. За один ход разрешается из любых двух кучек взять по одному камню и переложить их в третью. Можно ли за несколько ходов собрать все камни в одной из кучек?

Решение.

Рассмотрим остатки при делении на три исходных чисел – количества камней в кучках. В первой кучке остаток 1, во второй – 0, в третьей – 2. Рассмотрим, что будет дальше происходить с точки зрения остатков, когда мы перекладываем камни:

Мы нашли инвариант – после любой из операций остатки будут прежние: 0, 1, 2, только уже распределены по-другому. Если же мы сможем собрать все камни в одной кучке, то остатки при делении на 3 во всех кучках будет одинаковые (равны 0). Следовательно, указанными операциями собрать все камни в одной кучке нельзя.

Ответ: нет.

Задача 6.

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовем пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.

Решение.

Возьмем соседние звенья АВ и ВС и назовем уголком угол, симметричный углу АВС относительно точки В (на рисунке ниже уголок заштрихован). Такие же уголки можно рассмотреть для всех вершин ломаной. Ясно, что число особых пар равно числу точек пересечения звеньев с уголками. Остается заметить, что число звеньев ломаной, пересекающихся с одним уголком, четно, т.к. по пути от А к С ломаная входит в уголок столько же раз, сколько выходит из него (это следует из условия, что никакие три вершины ломаной не лежат на одной прямой). Следовательно, число особых пар чётно, что и требовалось доказать.

Задача 7 (региональный этап Всероссийской олимпиады школьников, 2016-2017 г.г., 11 класс, второй день, №8).

Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального d на столе рано или поздно появится карточка с числом, делящимся на
?

Решение.

Если в некоторый момент среди чисел на карточках есть ровно k нечётных, то среди произведений чисел по 12 ровно
нечётных; поэтому число на очередной добавляемой карточке будет нечётным ровно тогда, когда нечётно (и тогда k в эту минуту увеличится на 1).

Нетрудно заметить, что число
нечётно (это следует из того, что степени двойки, входящие в
и
, равны). Далее, при последовательной проверке получаем, что первое
,
,
- нечетные числа, а
- четное. Следовательно, когда количество нечетных карточек достигнет 32, больше оно увеличиваться не будет, и на столе всегда будет лежать только 32 нечетные карточки, а все добавляемые числа будут четными.

Пусть теперь на n -ном шаге – сумма всех произведений по 12 из чисел, написанных на карточках, а – сумма всех произведений по 11 чисел. Число
, которое будет записано на следующей карточке, отличается от на сумму произведений по 12 чисел, среди которых есть только что добавленное четное число , т.е. на
. Значит, . Число - четное, так как количество нечетных сумм по 11
четно. Значит,
нечетно, и максимальная степень двойки, на которую делится
равна максимальной степени двойки, на которую делится . Значит, так как изначально на столе не лежали числа, которые для любого натурального
d делились на , то и дальше такие числа не появятся.

Ответ: нет, нельзя.

Глава 2. Применение метода инвариантов в задах ЕГЭ, содержащих параметр

После анализа большого количества задач, был составлен алгоритм решения задач с параметром методом инвариантов..

Алгоритм решения задач с параметрами с помощью инварианта:

1) проверить на инвариантность данное уравнение, неравенство, систему уравнений (неравенств);

2) найти допустимые значения параметра из проверки выполнения условий: при «симметрии относительно знака переменной» подставить её нулевое значение; при «симметрии относительно перестановки переменных» все переменные обозначают одной буквой;

3) проверкой убедиться, что найденные значения параметра удовлетворяют условию задачи;

4) записать ответ.

Утверждение 1 . Если выражение
инвариантно относительно
преобразования
и уравнение
имеет корень ,то

Утверждение 2. Если выражение

и уравнение
имеет решение
, то и пара чисел

Утверждение 3 . Если выражение
инвариантно относительно преобразования
и уравнение
имеет решение
, то и пара чисел
также решение этого уравнения.

Утверждение 4. Если выражение
инвариантно относительно преобразования
и
, а уравнение
имеет решение
, то и пара чисел
также решение этого уравнения.

Утверждение 5. Если выражение
инвариантно относительно преобразования
, уравнение
имеет корень
, то
также корень этого уравнения.

Задача 1.

Найти все значения параметра а, при которых уравнение имеет одно решение

Решение.

Заметим, что если является корнем уравнения, то - - тоже корень => один корень может быть только если =-=0.
Подставим
:

При
:

1 корень, подходит

При
:

Левая часть этого уравнения больше или равна
, причем эта нижняя граница является точной – она достигается при
. Оценить правую часть немного сложнее. Прежде всего отметим, что при изменении переменной от
до
выражение
меняется от -1 до 1. На отрезке
функция
монотонно возрастает от
до
. Поэтому выражение
меняется от
до
. Соответственно, правая часть уравнения (1) меняется от
до
, причем значения правой части уравнения полностью заполняют этот отрезок. Из полученной информации относительно возможных значений левой и правой частей уравнения (1) следует, что они могут быть равны только тогда, когда одновременно равны
. Иначе говоря, уравнение (1) равносильно системе:

Первое уравнение имеет единственный корень
, который удовлетворяет и второму уравнению системы. Значит, система, а вместе с ней и исходное уравнение имеет единственное решение
. Поэтому проверяемое значение параметра (
) нужно включить в ответ задачи.

Ответ: 0;
.

Задача 2. система неравенств
имеет единственное решение?

Решение. 1. В данной системе наблюдаем «симметрию относительно замены переменных». Тогда, если –решение системы, то и
также решение системы. Единственность решения достигается при условии
(Утверждение 4).

2. Обозначив все переменные через
Из неравенства которое имеет единственное решение, если дискриминант квадратного трёхчлена равен нулю, т.е.

3. Проверим, имеет ли система единственное решение при найденных значениях параметра.

а) Подставим в данную систему неравенств
:

Сложим неравенства последней системы:
+

Раскрыв скобки и приведя подобные слагаемые, получим: . Отсюда



- единственное решение.

б) При подстановке
получим единственное решение

Ответ:

Задача 3. Найдите все значения параметра , при которых система уравнений

имеет четыре различных решения.

Решение.

Из вида системы следует, что> 0.

1.Система инвариантна при замене на - и на -. Поэтому, если искомое значение параметра и пара чисел ;
- решение системы, то пары
;
, ;
и
; -
также решения системы. (Утверждения 2 и 3). Поэтому найдем решения при ≥ 0, ≥0. Изобразим графики уравнений в одной системе координат. График первого уравнения – точки сторон квадрата ABCD , график второго - окружность с центром в начале координат и радиусом, равным .

По рисунку видно, что система имеет ровно четыре решения в двух случаях: 1)


;
; так как > 0, то
; 2) = 0
E - радиус окружности, вписанной в квадрат, сторона которого равна
по т. Пифагора из треугольника ВОС.

Значит, 0Е =
, тогда =
откуда
2
= 2;
2 =
и =
.

Ответ: = 1; =
.

Задача 4. При каких значениях параметра система уравнений
имеет ровно три решения?

Решение. 1. Если пара чисел ;
– решение системы, - искомый параметр, то пара

; -
– также решение системы. Значит, = -
= 0.(Утверждение 3).

2.Подставим = 0 в данную систему уравнений.

Получим:








Проверим, имеет ли данное уравнение при найденных значениях единственное решение. При =-3 имеем:


Решим второе уравнение системы:

или
не имеет решений.

Если у=0, то х=5 и (-5; 0) – единственное решение системы. Значит,
не подходит. . Заключение

В ходе проделанной работы был изучен метод инвариантов. Был применён метод инвариантов при решении задач ЕГЭ, содержащих параметр, и олимпиадных задач на раскраску, четность, остатки от деления, обосновано и наглядно показано практическое применение метода.

Список использованной литературы