Марганец положение в периодической системе. Марганец (химический элемент): свойства, применение, обозначение, степень окисления, интересные факты

Марганец — ценный для человека металл.

Химические свойства марганца определяют широкое использование его в качестве сырья для промышленного производства сплавов высокого качества. Соединения элемента применяются в медицине, сельском хозяйстве.

Физические и химические свойства металла

  1. Впервые химический элемент был обнаружен шведскими химиками в железной руде. Его извлекли путем нагревания смеси рудного материала с углем. В результате был извлечен металлический компонент, получивший свое название от немецкого слова, обозначающего «марганцевая руда».
  2. Химический элемент относится к ряду переходных и может образовывать соединения, содержащие атомы в степени окисления 0. При нагревании проявляет свойство вытеснять водород, разлагая воду.
  3. В природе этот хрупкий металл, отличающийся серебристым цветом, встречается только в соединениях. Его извлекают из рудного сырья, среди которого наиболее распространены такие виды:пиролюзит,манганит, псиломелан, браунит.
  4. Металл находится в марганцевых конкрециях, находящихся на дне океанов. Технология извлечения их со дна связана с использованием специального оборудования и не имеет промышленного характера.
  5. Марганец легко образует оксиды в результате окисления на воздухе. В зависимости от изменения температурного градиента при нагревании он реагирует с азотом, серой, кремнием. При поглощении водорода марганец образовывает твердые растворы.
  6. Его трудно растворить в воде при обычной комнатной температуре. В концентрированных кислотах он растворяется при нагревании, образовывая соли.
  7. Химический элемент № 25 отличается активностью в процессе реакций восстановления металлов из оксидов. Он вытесняет металлы, образовывая соединение с кислородом.

Технология извлечения химического элемента

Основными производителями и поставщиками металла на мировой рынок являются Бразилия, Австралия, ЮАР и Украина. Именно в этих странах находятся запасы руды, составляющие почти 73% мировых.

Получение черного металла в промышленных масштабах начинается с извлечения руд и их обогащения и зависит от соединений металла с другими элементами. Например, обычная карбонатная руда подвергается предварительному обжигу. В отдельных случаях ее выщелачивают с использованием серной кислоты с последующим термическим восстановлением с помощью кокса. Иногда для восстановления металла используется алюминий или кремний.

Химические процессы извлечения марганца.

Чистый металл извлекают электролизом из водных растворов сульфата марганца.

Применение марганца в промышленном производстве

  1. Основная часть металла используется для нужд черной металлургии в качестве добавки, а в мировых масштабах его потребление находится на 4 месте после основного сырья: железа, алюминия и меди. Марганец является обязательным элементом, присутствующим во всех видах чугуна и стали. Уникальное свойство марганца образовывать сплавы с большинством металлов используется для изготовления:
  • разных сортов марганцевой стали;
  • манганитов (сплав, в котором отсутствует железо).

Другие сферы применения металла

Свойства химического элемента и его соединений используются в промышленном производстве:

  • в качестве катализатора органических реакций;
  • для разложения неорганических солей;
  • для производства стекла;
  • при покрытии металлических поверхностей;
  • в керамической отрасли для окрашивания глазури и эмали
  • для адсорбции вредных веществ;
  • для отбеливания натуральных материалов (лен, шерсть).

Отходы, полученные в результате обработки металлического сырья с участием марганца, применяются в сельском хозяйстве для обогащения почвы под культуры ценным компонентом.

Химии этого элемента принадлежит важная роль в медицине.
Соли марганца применяют для образования антисептического водного раствора, чтобы промывать раны, обрабатывать ожоги.

Химический элемент № 25 необходим для нормальной деятельности организма, регулирования уровня глюкозы в крови, профилактики заболевания сахарным диабетом, обеспечения нормальной работы поджелудочной железы.

Недостаток марганца в организме человека может спровоцировать заболевание. Суточная потребность человека в важном микроэлементе составляет почти 10 мг. Его источниками для организма являются продукты питания:


Некоторые виды насекомых и растений способны концентрировать этот химический элемент, обеспечивающий активацию ферментов, участвующих в процессе дыхания, фотосинтеза.

Минералы марганца, в частности пиролюзит, известны были еще в античные времена. Считали пиролюзит разновидностью магнитного железняка и использовали при варке стекла – для осветления. То, что минерал в отличие от настоящего магнитного железняка магнитом не притягивается, объясняли довольно занятно: полагали, что пиролюзит – минерал женского пола и к магниту равнодушен.

В 18-м веке марганец выделили в чистом виде. И сегодня мы поговрим о нем детально. Так, обсудим, вреден ли чем опасен марганец, где его можно купить, как получить марганец и подчиняется ли он ГОСТу.

Марганец относится к подобной группе 7 группы 4 периода. Элемент является распространенным – занимает 14 место.

Элемент относится к тяжелым металлам – атомная масса более 40. На воздухе пассивируется – покрывается плотной оксидной пленкой, препятствующей дальнейшей реакции с кислородом. Благодаря этой пленке в нормальных условиях малоактивен.

При нагревании марганец вступает в реакцию с множеством простых веществ, кислот и оснований, образуя соединения с самой разной степенью окисления: -1, -6, +2, +3, +4, +7. Металл относится к переходным, поэтому с равной легкостью проявляет и восстановительные, и окислительные свойства. С металлами, например, с , образует твердые растворы, не вступая в реакцию.

Данное видео расскажет о том, что такое марганец:

Особенности и отличия от других материалов

Марганец – серебристо-белый металл, плотный, твердый – , с необыкновенно сложной структурой. Последняя является причиной хрупкости вещества. Известны 4 модификации марганца. Сплавы с металлом позволяют стабилизировать любую из них и получить твердые растворы с очень разными свойствами.

  • Марганец относится к числу жизненно важных микроэлементов. Причем в равной степени это относится и к растениям, и к животным. Элемент участвует в фотосинтезе, в процессе дыхания, активирует ряд ферментов, является непременным участником мышечного метаболизма и так далее. Суточная доза марганца для человека составляет 2– 9 мг. Одинаково опасен как недостаток, так и избыток элемента.
  • Металл тяжелее и тверже железа, однако практического применения в чистом виде не имеет из-за высокой хрупкости. Но его сплавы и соединения имеют необыкновенно большое значение в народном хозяйстве. Он используется в черной и цветной металлургии, в производстве удобрений, в электротехнике, в тонком органическом синтезе и так далее.
  • От металлов своей собственной подгруппы марганец довольно сильно отличается. Технеций – радиоактивный элемент, получен искусственно. Рений относит к рассеянным и редким элементам. Борий также может быть получен только искусственным путем и в природе не встречается. Химическая активность и технеция и рения намного ниже, чем у марганца. Практическое применение, если не считать ядерного синтеза, находит только марганец.

Марганец (фото)

Плюсы и минусы

Физические и химические свойства металла таковы, что на практике дело имеют не с самим марганцем, а с его многочисленными соединениями и сплавами, так что достоинства и недостатки материала стоит рассматривать с этой точки зрения.

  • Марганец образует самые разнообразные сплавы практически со всеми металлами, что является несомненным плюсом.
  • полностью взаиморастворимы, то есть, образуют твердые растворы с любым соотношением элементом, однородные по свойствам. При этом сплав будет иметь куда более низкую температуру кипения, чем у марганца.
  • Наибольшее практическое значение имеют сплавы элемента с углеродом и . Оба сплава имеют огромное значение для сталелитейной промышленности.
  • Многочисленные и разнообразные соединения марганца применяют в химической, текстильной, стекольной промышленности, при производстве удобрений и так далее. Основой такого разнообразия служит химическая активность вещества.

Недостатки металла связаны с особенностями его строения, не позволяющими использовать сам металл в качестве конструкционного материала.

  • Главный из них – хрупкость при высокой твердости. Mn до +707 С кристаллизируется в структуре, где ячейка включает 58 атомов.
  • Довольно высокая температура кипения, работать с металлом со столь высокими показателями тяжело.
  • Электропроводность марганца очень низкая, так что применение его в электротехнике тоже ограничено.

Про химические и физические свойства марганца поговорим далее.

Свойства и характеристики

Физические характеристики металла заметно зависят от температуры. Учитывая наличие целых 4 модификаций это неудивительно.

Основные характеристики вещества таковы:

  • плотность – при нормальной температуре составляет 7,45 г/куб. см. Именно эта величина слабо зависит от температуры: так, при нагревании до 600 С плотность уменьшается только на 7%;
  • температура плавления – 1244 С;
  • температура кипения – 2095 С;
  • теплопроводность при 25 С составляет 66,57 Вт/(м·К), что для металла является низким показателем;
  • удельная теплоемкость – 0,478 кДж/(кг·К);
  • коэффициент линейного расширения, измеренный при 20 С, равен 22,3·10 -6 град -1 — ; Теплоемкость и теплопроводность вещества увеличиваются линейно при увеличении температуры;
  • удельное электрическое сопротивление – 1,5– 2,6 мком·м, лишь немногим выше, чем у свинца.

Марганец является парамагнетиком, то есть, намагничивается во внешнем магнитном поле и притягивается к магниту. Металл переходит в антиферромагнитное состояние при низких температурах, причем температура перехода для каждой модификации разная.

Структура и состав марганца описаны ниже.

Марганец и его соединения — тема видеоролика ниже:

Структура и состав

Описаны 4 структурные модификации вещества, каждая из которых устойчива в определенном температурном интервале. Сплавление с определенными металлами может стабилизировать любую фазу.

  • До 707 С устойчивой является а-модификация. – кубическая объемно-центрированная решетка, в состав элементарной ячейки которой входит 58 атомов. Такая структура очень сложна и обуславливает высокую хрупкость вещества. Его показатели – теплоемкость, теплопроводность, плотность, приводятся как свойства вещества.
  • При 700–1079 С устойчивой является b-фаза с таким же типом решетки, но с более простым строением: ячейку составляет 20 атомов. В этой фазе марганец проявляет определенную пластичность. Плотность b-модификации – 7,26 г/куб. см. Фазу легко зафиксировать – закалкой вещества при температуре выше температуры фазового перехода.
  • При температурах от 1079 С до 1143 С g-фаза стабильна. Для нее характерна кубическая гранецентрированная решетка с ячейкой из 4 атомов. Модификация отличается пластичностью. Однако зафиксировать фазу полностью при охлаждении не удается. При температуре перехода плотность металла составляет 6,37 г/куб. см, при нормальной – 7, 21 г/куб. см.
  • Выше температуры 1143 С и до кипения стабилизируется d-фаза с объемно-центрированной кубической решеткой, ячейка которой включает 2 атома. Плотность модификации составляет 6,28 г/куб. см. Интересно то, что d-Mn может перейти в антиферромагнитное состояние при высокой температуре – 303 С.

Фазовые переходы имеют большое значение при получении разнообразных сплавов, тем более что физические характеристики структурных модификаций отличаются.

Производство марганца описано ниже.

Производство

В основном , но встречаются и самостоятельные месторождения. Так, на территории чиатурского месторождения сконцентрировано до 40% мирового запаса марганцевых руд.

Элемент рассеян едва ли не во всех горных породах, легко вымывается. Содержание его в морской воде невелико, но на дне океанов он формирует вместе с железом конкреции, в которых содержания элемента достигает 45%. Эти залежи считают перспективными для дальнейшего разрабатывания.

На территории России крупных месторождений марганца мало, потому для РФ он является остродефицитным сырьем.

Самые известные минералы: пиролюзит, магнитит, браунит, марганцевый шпат и так далее. Содержание элемента в них варьируется от 62 до 69%. Добываются карьерным или шахтным способом. Как правило, руда предварительно обогащается.

Получение марганца напрямую связано с его применением. Главный его потребитель – сталелитейная промышленность, а для ее нужд требуется не сам металл, а его соединение с железом – ферромарганец. Поэтому говоря о получении марганца, зачастую имеют в виду соединение, необходимое в черной металлургии.

Ранее ферромарганец производился в доменных печах. Но из-за дефицита кокса и необходимости использовать бедные марганцовые руды производители перешли к выплавке в электропечах.

Для плавки используются открытые и закрытые печи, футерованные углем – таким образом получают углеродистый ферромарганец. Плавку производят при напряжении в 110–160 В, двумя методами – флюсовым и бесфлюсовым. Второй метод более экономичен, так как позволяет полнее извлечь элемент, однако при большом содержании кремнезема в руде, возможен только флюсовый способ.

  • Бесфлюсовый метод – непрерывный процесс. Шихта из марганцевой руды, кокса и железной стружки загружается по мере переплавления. Важно следить за достаточным количеством восстановителя. Ферромарганец и шлак выпускаются одновременно 5–6 раз за смену.
  • Силикомарганец производят сходным методом в электроплавильной печи. Шихта, кроме руды включает марганцевый шлак – без фосфора, кварцит и коксик.
  • Металлический марганец получают аналогично выплавке ферромарганца. Сырьем служат отходы от разливки и разделки сплава. После расплавления сплава и шихты добавляют силикомарганец, а за 30 минут до окончания плавки продувают сжатым воздухом.
  • Химически чистое вещество получают электролизом .

Применение

90% мировой добычи марганца уходит на нужды сталелитейной промышленности. Причем большинство металлов требуется не для получения собственно марганцевых сплавов, а для и включает 1% элемента. Более того, он может полностью заместить никель, если повысить его содержание до 4–16%. Дело в том, что марганец как и стабилизирует в стали фазу аустенита.

  • Марганец способен заметно понизить температуру перехода аустенита в феррит, что предупреждает осаждение карбида железа. Таким образом готовый продукт приобретает большую жесткость и прочность.
  • Элемент марганец применяют для получения стойких к коррозии – от 1 %. Такой материал применяется в пищеобрабатывающей промышленности при изготовлении самой разной тары. Сплавы металла с – , используются при изготовлении морских винтов, подшипников, шестерней и других деталей, контактирующих с морской водой.
  • Соединения его очень широко используются в неметаллургической промышленности – в медицине, в сельском хозяйстве, на химических производствах.
  • Марганец – металл, который интересен не столько сам по себе, сколько свойствами своих многочисленных соединений. Однако переоценить его значение в качестве легирующего элемента сложно.

    Реакция оксида марганца с алюминием продемонстрирована в этом видео:

    Минералы Марганца известны издавна. Древнеримский натуралист Плиний упоминает о черном камне, который использовали для обесцвечивания жидкой стеклянной массы; речь шла о минерале пиролюзите МnО 2 . В Грузии пиролюзит с древнейших времен служил присадочным материалом при получении железа. Долгое время пиролюзит называли черной магнезией и считали разновидностью магнитного железняка (магнетита). В 1774 году К. Шееле показал, что это соединение неизвестного металла, а другой шведский ученый Ю. Ган, сильно нагревая смесь пиролюзита с углем, получил Марганец, загрязненный углеродом. Название Марганец традиционно производят от немецкого Manganerz - марганцевая руда.

    Распространение Марганца в природе. Среднее содержание Марганец в земной коре 0,1%, в большинстве изверженных пород 0,06-0,2% по массе, где он находится в рассеянном состоянии в форме Мn 2+ (аналог Fe 2+). На земной поверхности Мn 2+ легко окисляется, здесь известны также минералы Мn 3+ и Мn 4+ . В биосфере Марганец энергично мигрирует в восстановительных условиях и малоподвижен в окислительной среде. Наиболее подвижен Марганец в кислых водах тундры и лесных ландшафтов, где он находится в форме Мn 2+ . Содержание Марганца здесь часто повышено и культурные растения местами страдают от избытка Марганца; в почвах, озерах, болотах образуются железо-марганцевые конкреции, озерные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды Марганец малоподвижен, организмы бедны Марганцем, культурные растения часто нуждаются в марганцевых микроудобрениях. Речные воды бедны Марганцем (10 -6 -10 -5 г/л), однако суммарный вынос этого элемента реками огромен, причем основная его масса осаждается в прибрежной зоне. Еще меньше Марганца в воде озер, морей и океанов; во многих местах океанического дна распространены железо-марганцевые конкреции, образовавшиеся в прошлые геологические периоды.

    Физические свойства Марганца. Плотность Марганца 7,2-7,4 г/см 3 ; t пл 1245 °С; t кип 2150 °С. Марганец имеет 4 полиморфные модификации: α-Мn (кубическая объемноцентрированная решетка с 58 атомами в элементарной ячейке), β-Мn (кубическая объемноцентрированная с 20 атомами в ячейке), γ-Мn (тетрагональная с 4 атомами в ячейке) и δ-Mn (кубическая объемноцентрированная). Температура превращений: α=β 705 °С; β=γ 1090 °С и γ=δ 1133 °С; α-модификация хрупка; γ (и отчасти β) пластична, что имеет важное значение при создании сплавов.

    Атомный радиус Марганца 1,30 Å. ионные радиусы (в Å): Mn 2+ 0,91, Mn 4+ 0,52; Mn 7+ 0,46. Прочие физические свойства α-Mn: удельная теплоемкость (при 25°С) 0,478 кДж/(кг·К) [т. е. 0.114 ккал/(г·°С)]; температурный коэффициент линейного расширения (при 20°С) 22,3·10 -6 град -1 ; теплопроводность (при 25 °С) 66,57 Вт/(м·К) [т. е. 0,159 кал/(см·сек·°С)]; удельное объемное электрическое сопротивление 1,5-2,6 мком·м (т. е. 150-260 мком·см): температурный коэффициент электрического сопротивления (2-3)·10 -4 град -1 . Марганец парамагнитен.

    Химические свойства Марганца. Химически Марганец достаточно активен, при нагревании энергично взаимодействует с неметаллами - кислородом (образуется смесь оксидов Марганца разной валентности), азотом, серой, углеродом, фосфором и другими. При комнатной температуре Марганец на воздухе не изменяется: очень медленно реагирует с водой. В кислотах (соляной, разбавленной серной) легко растворяется, образуя соли двухвалентного Марганца. При нагревании в вакууме Марганец легко испаряется даже из сплавов.

    Марганец образует сплавы со многими химическими элементами; большинство металлов растворяется в отдельных его модификациях и стабилизирует их. Так, Cu, Fe, Co, Ni и другие стабилизируют γ-модификацию. Al, Ag и другие расширяют области β- и σ-Mn в двойных сплавах. Это имеет важное значение для получения сплавов на основе Марганца, поддающихся пластической деформации (ковке, прокатке, штамповке).

    В соединениях Марганец обычно проявляет валентность от 2 до 7 (наиболее устойчивы степени окисления +2, +4 и +7). С увеличением степени окисления возрастают окислительные и кислотные свойства соединений Марганца.

    Соединения Mn(+2)- восстановители. Оксид MnO - порошок серо-зеленого цвета; обладает основными свойствами. нерастворим в воде и щелочах, хорошо растворим в кислотах. Гидрооксид Mn(OH) 3 - белое вещество, нерастворимое в воде. Соединения Mn(+4) могут выступать и как окислители (а) и как восстановители (б):

    MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O (а)

    (по этой редакции в лабораториях получают хлор)

    MnO 2 + KClO 3 + 6KOH = 3K 2 MnO 4 + KCl + 3H 2 O (б)

    (реакция идет при сплавлении).

    Оксид Марганца (II) MnO 2 - черно-бурого цвета, соответствующий гидрооксид Мп(ОН) 4 - темно-бурого цвета. Оба соединения в воде нерастворимы, оба амфотсрны с небольшим преобладанием кислотной функции. Соли типа K 2 MnO 4 называются манганитами.

    Из соединений Mn(+6) наиболее характерны марганцовистая кислота и ее соли манганаты. Весьма важны соединения Mn(+7) - марганцовая кислота, марганцовый ангидрид и перманганаты.

    Получение Марганца. Наиболее чистый Марганец получают в промышленности по способу советского электрохимика Р. И. Агладзе (1939) электролизом водных растворов с добавкой (NH 4) 2 SO 4 при рН = 8,0-8,5. Процесс ведут с анодами из свинца и катодами из титанового сплава АТ-3 или нержавеющей стали. Чешуйки Марганца снимают с катодов и, если необходимо, переплавляют. Галогенным процессом, например, хлорированием руды Мn, и восстановлением галогенидов получают Марганец с суммой примесей около 0,1%. Менее чистый Марганец получают алюминотермией по реакции:

    3Mn 3 O 4 + 8Al = 9Mn + 4Al 2 O 3

    а также электротермией.

    Применение Марганца. Основной потребитель Марганец - черная металлургия, расходующая в среднем около 8-9 кг Марганца на 1 т выплавляемой стали. Для введения Марганца в сталь применяют чаще всего его сплавы с железом - ферромарганец (70 - 80% Марганец, 0,5 - 7,0% углерода, остальное железо и примеси). Выплавляют его в доменных и электрических печах. Высокоуглеродистый ферромарганец служит для раскисления и десульфурации стали; средне- и малоуглеродистый - для легирования стали. Малолегированная конструкционная и рельсовая сталь содержит 0,9 - 1,6% Mn; высоколегированная, очень износоустойчивая сталь с 15% Mn и 1,25% С (изобретена английским металлургом Р. Гейрилдом в 1883 году) была одной из первых легированных сталей. В СССР производится безникелевая нержавеющая сталь, содержащая 14% Сr и 15% Mn.

    Марганец используется также в сплавах на нежелезной основе. Сплавы меди с Марганцем применяют для изготовления турбинных лопаток; марганцовые бронзы - при производстве пропеллеров и других деталей, где необходимо сочетание прочности и коррозионной устойчивости. Почти все промышленные алюминиевые сплавы и магниевые сплавы содержат Марганец. Разработаны деформируемые сплавы на основе Марганца, легированные медью, никелем и других элементами. Гальваническое покрытие Марганца применяется для защиты металлических изделий от коррозии.

    Соединения Марганца применяют и при изготовлении гальванических элементов; в производстве стекла и в керамической промышленности; в красильной и полиграфической промышленности, в сельском хозяйстве и т. д.

    Марганец в организме. Марганец широко распространен в природе, являясь постоянной составной частью растительных и животных организмов. Содержание Марганца в растениях составляет десятитысячные-сотые, а в животных - стотысячные-тысячные доли процента. Беспозвоночные животные богаче Марганцем, чем позвоночные. Среди растений значительное количество Марганца накапливают некоторые ржавчинные грибы, водяной орех, ряска, бактерии родов Leptothrix, Crenothrix и некоторые диатомовые водоросли (Cocconeis) (до нескольких процентов в золе), среди животных - рыжие муравьи, некоторые моллюски и ракообразные (до сотых долей процента). Марганец - активатор ряда ферментов, участвует в процессах дыхания, фотосинтезе, биосинтезе нуклеиновых кислот и других, усиливает действие инсулина и других гормонов, влияет на кроветворение и минеральный обмен. Недостаток Марганца у растений вызывает некрозы, хлороз яблони и цитрусовых, пятнистость злаков, ожоги у картофеля, ячменя и т. п. Марганец обнаружен во всех органах и тканях человека (наиболее богаты им печень, скелет и щитовидная железа). Суточная потребность животных и человека в Марганце - несколько мг (ежедневно с пищей человек получает 3-8 мг Марганца). Потребность в Марганце повышается при физической нагрузке, при недостатке солнечного света; дети нуждаются в большем количестве Марганца, чем взрослые. Показано, что недостаток Марганца в пище животных отрицательно влияет на их рост и развитие, вызывает анемию, так называемых лактационную тетанию, нарушение минерального обмена костной ткани. Для предотвращения указанных заболеваний в корм вводят соли Марганца.

    В медицине некоторые соли Марганца (например, KMnO 4) применяют как дезинфицирующие средства. Соединения Марганца, применяемые во многих отраслях промышленности, могут оказывать токсическое действие на организм. Поступая в организм главным образом через дыхательные пути, Марганец накапливается в паренхиматозных органах (печень, селезенка), костях и мышцах и выводится медленно, в течение многих лет. Предельно допустимая концентрация соединений Марганец в воздухе - 0,3 мг/м 3 . При выраженных отравлениях наблюдается поражение нервной системы с характерным синдромом марганцевого паркинсонизма. Лечение: витаминотерапия, холинолитические средства и другие. Профилактика: соблюдение правил гигиены труда.

    Химия металлов

    Лекция 2. Основные вопросы, рассматриваемые в лекции

    Металлы VIIБ-подгруппы

    Общая характеристика металлов VIIБ-подгруппы.

    Химия марганца

    Природные соединения Mn

    Физические и химические свойства металла.

    Соединения Mn. Окислительно-восстановительные свойства соеди-

    Краткая характеристика Tc и Re.

    Исполнитель:

    Мероприятие №

    Ме таллы VIIБ-подгруппы

    Общая характеристика

    VIIБ -подгруппу образуют d-элементы: Mn, Tc, Re, Bh.

    Валентные электроны описываются общей формулой:

    (n–1)d 5 ns2

    Простые вещества – металлы, серебристо-серые,

    марганец

    тяжелые, с высокими температурами плавления, которые

    повышаются при переходе от Mn к Re, так что по туго-

    плавкости Re уступает только W.

    Наибольшее практическое значение имеет Mn.

    технеций

    Элементы Tc, Bh – радиоактивные элементы, искус-

    ственно полученные в результате ядерного синтеза; Re –

    редкий элемент.

    Элементы Tc и Re более сходны между собой, чем

    с марганцем . У Tc и Re более устойчива высшая сте-

    пень окисления, поэтому у этих элементов распро-

    странены соединения в степени окисления 7.

    Для Mn характерны степени окисления: 2, 3, 4,

    Более устойчивы –

    2 и 4. Эти степени окисления

    проявляются в природных соединениях. Самые распро-

    страненные минералы Mn: пиролюзит MnO2 и родохрозит MnCO3 .

    Соединения Mn(+7) и (+6) – сильные окислители.

    Наибольшее сходство Mn, Tc, Re проявляют в высшей степени окис-

    ления, оно выражается в кислотном характере высших оксидов и гидроксидов.

    Исполнитель:

    Мероприятие №

    Высшие гидроксиды всех элементов VIIБ-подгруппы являются сильными

    кислотами с общей формулой НЭО4 .

    В высшей степени окисления элементы Mn, Tc, Re проявляют сходство с элементом главной подгруппы хлором. Кислоты: HMnO4 , HTcO4, HReO4 и

    HClO4 являются сильными. Для элементов VIIБ-подгруппы характерно замет-

    ное сходство со своими соседями по ряду, в частности, Mn проявляет сходство с Fe. В природе соединения Mn всегда соседствуют с соединениями Fe.

    М ар ганец

    Характерные степени окисления

    Валентные электроны Mn – 3d5 4s2 .

    Наиболеее распространенными степенями

    3d5 4s2

    марганец

    окисления у Mn являются 2, 3, 4, 6, 7;

    более устойчивыми – 2 и 4 . В водных растворах

    степень окисления +2 устойчива в кислой, а +4 – в

    нейтральной, слабощелочной и слабокислой среде.

    Соединения Mn(+7) и (+6) проявляют сильные окислительные свойства.

    Кислотно–основной характер оксидов и гидроксидов Mn закономерно из-

    меняется в зависимости от степени окисления: в степени окисления +2 оксид и гидроксид являются основными, а в высшей степени окисления – кислотными,

    причем, HMnO4 – это сильная кислота.

    В водных растворах Mn(+2) существует в виде аквакатионов

    2+ , которые для простоты обозначают Mn2+ . Марганец в высоких степенях окисления находится в растворе в форме тетраоксоанионов: MnO4 2– и

    MnO4 – .

    Исполнитель:

    Мероприятие №

    Природные соединения и получение металла

    Элемент Mn по распространенности в земной коре среди тяжелых метал-

    лов следует за железом, но заметно уступает ему, – содержание Fe составляет около 5 %, а Mn – лишь около 0,1%. У марганца более распространены оксид-

    ные и карбонатные и руды. Наибольшее значение имеют минералы: пиролю-

    зит MnO2 и родохрозит MnCO3 .

    для получения Mn

    Кроме этих минералов для получения Mn используют гаусманит Mn3 O4

    и гидратированный оксид псиломелан MnO2 . xH2 O. В марганцевых рудах все-

    Марганец используют главным образом в производстве особых сортов сталей, обладающих высокой прочностью и стойкостью к удару. Поэтому ос-

    новное количество Mn получают не в чистом виде, а в виде ферромарган-

    ца – сплава марганца и железа, содержащего от 70 до 88% Mn.

    Общий объем ежегодного мирового производства марганца, в том числе в виде ферромарганца, ~ (10 12) млн т/год.

    Для получения ферромарганца оксидную марганцевую руду восстанавли-

    вают углем.

    MnO2 + 2C = Mn + 2CO

    Исполнитель:

    Мероприятие №

    Вместе с оксидами Mn восстанавливаются и оксиды Fe, содержащиеся в ру-

    де. Для получения марганца с минимальным содержанием Fe и С, соединения

    Fe предварительно отделяют и получают смешанный оксид Mn3 O4

    (MnO . Mn2 O3 ). Его затем восстанавливают алюминием (пиролюзит реагирует с

    Al слишком бурно).

    3Mn3 O4 + 8Al = 9Mn + 4Al2 O3

    Чистый марганец получают гидрометаллургическим способом. После предварительного получения соли MnSO4 , через раствор сульфата Mn про-

    пускают электрический ток, марганец восстанавливается на катоде:

    Mn2+ + 2e– = Mn0 .

    Простое вещество

    Марганец – светло-серый металл. Плотность – 7,4 г/см3 . Температура плавления – 1245О С.

    Это довольно активный металл, Е (Mn

    / Mn) = - 1,18 В.

    Он легко окисляется до катиона Mn2+ в разбавлен-

    ных кислотах.

    Mn + 2H+ = Mn2+ + H2

    Марганец пассивируется в концентрирован-

    ных азотной и серной кислотах, но при нагревании

    Рис. Марганец – се-

    начинает с ними медленно взаимодействовать, но

    рый металл, похожий

    даже под действием таких сильных окислителей

    на железо

    Mn переходит в катион

    Mn2+ . При нагревании порошкообразный марганец взаимодействует с водой с

    выделением Н2 .

    Из-за окисления на воздухе марганец покрывается бурыми пятнами,

    В атмосфере кислорода марганец образует оксид

    Mn2 O3 , а при более высокой температуре смешанный оксид MnO. Mn2 O3

    (Mn3 O4 ).

    Исполнитель:

    Мероприятие №

    При нагревании марганец реагирует с галогенами и серой. Сродство Mn

    к сере больше, чем у железа, поэтому при добавлении ферромарганца к стали,

    растворенная в ней сера связывается в MnS. Сульфид MnS не растворяется в металле и уходит в шлак. Прочность стали после удаления серы, вызывающей хрупкость, повышается.

    При очень высоких температурах (>1200 0 С) марганец, взаимодействуя с азотом и углеродом, образует нестехиометрические нитриды и карбиды.

    Соединения марганца

    Соединения марганца (+7)

    Все соединения Mn(+7) проявляют сильные окислительные свойства.

    Перманганат калия KMnO 4 – наиболее распространенное соеди-

    нение Mn(+7). В чистом виде это кристаллическое вещество темно-

    фиолетового цвета. При нагревании кристаллического перманганата он разла-

    2KMnO4 = K2 MnO4 + MnO2 + O2

    По этой реакции в лаборатории можно получать

    Анион MnO4 – окрашивает растворы перман-

    ганата в малиново-фиолетовый цвет. На по-

    верхностях, контактирующих с раствором

    Рис. Раствор KMnO4 розо-

    KMnO4 , из-за способности перманганата окис-

    во-фиолетого цвета

    лять воду, образуются тонкие желто–коричневые

    пленки оксида MnO2 .

    4KMnO4 + 2H2 O = 4MnO2 + 3O2 + 4KOH

    Чтобы замедлить эту реакцию, ускоряющуюся на свету, растворы KMnO4 хра-

    нят в темных бутылках.

    При добавлении к кристаллам перманганата нескольких капель концен-

    трированной серной кислоты образуется ангидрид марганцовой кислоты.

    Исполнитель:

    Мероприятие №

    2KMnO4 + H2 SO4 2Mn2 O7 + K2 SO4 + H2 O

    Оксид Mn 2 O 7 – это тяжелая маслообразная жидкость темно–зеленого цвета. Это единственный оксид металла, который при обычных условиях нахо-

    дится в жидком состоянии (температура плавления 5,9 0 С). Оксид имеет моле-

    кулярную структуру, очень неустойчив, при 55 0 С разлагается со взрывом. 2Mn2 O7 = 4MnO2 + 3O2

    Оксид Mn2 O7 – очень сильный и энергичный окислитель. Многие ор-

    ганические вещества окисляются под его воздействием до СО2 и Н2 О. Оксид

    Mn2 O7 иногда называют химическими спичками. Если стеклянную палочку смочить в Mn2 O7 и поднести к спиртовке, она загорится.

    При растворении Mn2 O7 в воде образуется марганцовая кислота.

    Кислота HMnO 4 – это сильная кислота, существует только в вод-

    ном растворе , в свободном состоянии не выделена. Кислота HMnO4 разлагает-

    ся с выделением O2 и MnO2 .

    При добавлении твердой щелочи к раствору KMnO4 происходит образо-

    вание зеленого манганата.

    4KMnO4 + 4KOH (к) = 4K2 MnO4 + O2 + 2H2 O.

    При нагревании KMnO4 с концентрированной соляной кислотой образу-

    ется газ Cl2 .

    2KMnO4 (к) + 16HCl (конц.) = 2MnCl2 + 5Cl2 + 8H2 O + 2KCl

    В этих реакциях проявляются сильные окислительные свойства перманганата.

    Продукты взаимодействия KMnO4 с восстановителями зависят от кислотности раствора, в котором протекает реакция.

    В кислых растворах образуется бесцветный катион Mn2+ .

    MnO4 – + 8H+ +5e–  Mn2+ + 4H2 O; (E0 = +1,53 В).

    Из нейтральных растворов выпадает бурый осадок MnO2 .

    MnO4 – +2H2 O +3e–  MnO2 + 4OH– .

    В щелочных растворах образуется зеленый анион MnO4 2– .

    Исполнитель:

    Мероприятие №

    Перманганат калия в промышленности получают либо из марганца

    (окисляя его на аноде в щелочном растворе), либо из пиролюзита (MnO2 пред-

    варительно окисляют до K2 MnO4 , который затем на аноде окисляют до KMnO4 ).

    Соединения марганца (+6)

    Манганаты – соли с анионом MnO4 2– , имеют яркий зеленый цвет.

    Анион MnO4 2─ устойчив только в сильнощелочной среде. Под действием воды и, особенно, кислоты манганаты диспропорционируют с образованием соеди-

    нений Mn в степени окисления 4 и 7.

    3MnO4 2– + 2H2 O= MnO2 + 2MnO4 – + 4OH–

    По этой причине кислота Н2 MnO4 не существует.

    Манганаты можно получить, сплавляя MnO2 с щелочами или карбоната-

    ми в присутствии окислителя.

    2MnO2 (к) + 4KOH (ж) + О2 = 2K2 MnO4 + 2H2 O

    Манганаты являются сильными окислителями, но если на них подейство-

    вать еще более сильным окислителем, то они переходят в перманганаты.

    Диспропорционирование

    Соединения марганца (+4)

    – наиболее устойчивое соединение Mn. Этот оксид встречается в природе (минерал пиролюзит).

    Оксид MnO2 – черно-коричневое вещество с очень прочной кристалли-

    ческой решеткой (такой же, как у рутила TiO2 ). По этой причине, несмотря на то, чтооксид MnO 2 является амфотерным , он не реагирует с растворами щелочей и с разбавленными кислотами (так же, как и TiO2 ). Он растворяется в концентрированных кислотах.

    MnO2 + 4HCl (конц.) = MnCl2 + Cl2 + 2H2 O

    Реакцию используют в лаборатории для получения Cl2 .

    При растворении MnO2 в концентрированной серной и азотной кислоте образуются Mn2+ и О2 .

    Таким образом, в очень кислой среде MnO2 стремится перейти в

    катион Mn2+ .

    С щелочами MnO2 реагирует только в расплавах с образованием смешан-

    ных оксидов. В присутствии окислителя в щелочных расплавах образуются манганаты.

    Оксид MnO2 используют в промышленности в качестве дешевого окислителя. В частности, окислительно-восстановительное взаимодействие

    2 разлагается с выделением О2 и образо-

    ванием оксидов Mn2 O3 и Mn3 O4 (MnO. Mn2 O3 ).

    Гидроксид Mn(+4) не выделен, при восстановлении перманганата и ман-

    ганата в нейтральных или слабощелочных средах, а также при окислении

    Mn(OH)2 и MnOOH из растворов выпадает темно-бурый осадок гидратирован-

    ного MnO2 .

    Оксид и гидроксид Mn(+3) имеют основной характер. Это твердые,

    бурого цвета, нерастворимые в воде и неустойчивые вещества.

    При взаимодействии с разбавленными кислотами они диспропорциони-

    руют, образуя соединения Mn в степенях окисления 4 и 2. 2MnOOH + H2 SO4 = MnSO4 + MnO2 + 2H2 O

    С концентрированными кислотами они взаимодействуют также как и

    MnO2 , т.е. в кислой среде переходят в катион Mn2+ . В щелочной среде легко окисляются на воздухе до MnO2 .

    Соединения марганца (+2)

    В водных растворах соединения Mn(+2) устойчивы в кислой среде.

    Оксид и гидроксид Mn(+2) имеют основной характер, легко раство-

    ряются в кислотах с образованием гидратированного катиона Mn2+ .

    Оксид MnO – серо-зеленое тугоплавкое кристаллическое соединение

    (температура плавления – 18420 С). Его можно получить при разложении кар-

    боната в отсутствии кислорода.

    MnCO3 = MnO + CO2 .

    В воде MnO не растворяется.

    Исполнитель:

    Исполнитель:

    Мероприятие №

    МАРГАНЕЦ (химический элемент)

    МА́РГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Природный марганец состоит только из нуклида (см. НУКЛИД) 55 Mn. Конфигурация двух внешних электронных слоев атома марганца 3s 2 p 6 d 5 4s 2 . В периодической системе Д. И. Менделеева марганец входит в группу VIIВ, к которой относятся также технеций (см. ТЕХНЕЦИЙ) и рений (см. РЕНИЙ) , и располагается в 4-м периоде. Образует соединения в степенях окисления от +2 (валентность II) до +7 (валентность VII), наиболее устойчивы соединения, в которых марганец проявляет степени окисления +2 и +7. У марганца, как и у многих других переходных металлов, известны также соединения, содержащие атомы марганца в степени окисления 0.
    Радиус нейтрального атома марганца 0,130 нм, радиус иона Mn 2+ - 0,080-0,104 нм, иона Mn 7+ - 0,039-0,060 нм. Энергии последовательной ионизации атома марганца 7,435, 15,64, 33,7, 51,2, 72,4 эВ. По шкале Полинга электроотрицательность марганца 1,55; марганец принадлежит к числу переходных металлов. Марганец в компактном виде - твердый серебристо-белый металл.
    История открытия
    Один из основных материалов марганца - пиролюзит (см. ПИРОЛЮЗИТ) - был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану (см. ГАН Юхан Готлиб) , который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале 19 в. для него было принято название «манганум» (от немецкого Manganerz - марганцевая руда).
    Нахождение в природе
    В земной коре содержание марганца составляет около 0,1 % по массе. В свободном виде марганец не встречается. Из руд наиболее распространены пиролюзит MnO 2 (содержит 63,2 % марганца), манганит (см. МАНГАНИТ) MnO 2 ·Mn(OH) 2 (62,5 % марганца), браунит (см. БРАУНИТ) Mn 2 O 3 (69,5 % марганца), родохрозит (см. РОДОХРОЗИТ) MnCo 3 (47,8 % марганца), псиломелан (см. ПСИЛОМЕЛАН) mMnO·MnO 2 ·nH 2 O (45-60% марганца). Марганец содержат жՐېՐאޭмарганцевые конкреции, которые в больших количествах (сотни миллиардов тонн) находятся на дне Тихого, Атлантического и Индийского океанов. В морской воде содержится около 1,0·10 –8 % марганца. Промышленного значения эти запасы марганца пока не имеют из-за сложности подъема конкреций на поверхность.
    Получение
    Промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление). Иногда в качестве восстановителя используют алюминий или кремний. Для практических целей чаще всего используют ферромарганец, полученный в доменном процессе (см. ст. Железо (см. ЖЕЛЕЗО) ) при восстановлении руд железа и марганца коксом (см. КОКС) . В ферромарганце содержание углерода составляет 6-8 % по массе. Чистый марганец получают электролизом водных растворов сульфата марганца MnSO 4 , который проводят в присутствии сульфата аммония (NH 4) 2 SO 4 .
    Физические и химические свойства
    Марганец твердый хрупкий металл. Известны четыре кубические модификации металлического марганца. При температурах от комнатной и до 710°C устойчив альфа-Mn, параметр решетки а = 0,89125 нм, плотность 7,44 кг/дм 3 . В интервале температур 710-1090°C существует бета-Mn, параметр решетки а = 0,6300 нм; при температурах 1090-1137°C - гамма-Mn, параметр решетки а = 0,38550 нм. Наконец, при температуре от 1137°C и до температуры плавления (1244°C) устойчив дельта-Mn с параметром решетки а = 0,30750 нм. Модификаци альфа, бета и дельта хрупкие, гамма-Mn пластичен. Температура кипения марганца около 2080°C.
    На воздухе марганец окисляется, в результате чего его поверхность покрывается плотной оксидной пленкой, которая предохраняет металл от дальнейшего окисления. При прокаливании на воздухе выше 800°C марганец покрывается окалиной, состоящей из внешнего слоя Mn 3 O 4 и внутреннего слоя состава MnO. Марганец образует несколько оксидов: MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 и Mn 2 O 7 . Все они, кроме Mn 2 O 7 , представляющего собой при комнатной температуре маслянистую зеленую жидкость с температурой плавления 5,9°C, твердые кристаллические вещества. Монооксид марганца MnO образуется при разложении солей двухвалентного марганца (карбоната и других) при температуре около 300°C в инертной атмосфере:
    MnCO 3 = MnO + CO 2
    Этот оксид обладает полупроводниковыми свойствами. При разложении MnOОН можно получить Mn 2 O 3 . Этот же оксид марганца образуется при нагревании MnO 2 на воздухе при температуре примерно 600°C:
    4MnO 2 = 2Mn 2 O 3 + O 2
    Оксид Mn 2 O 3 восстанавливается водородом до MnO, а под действием разбавленных серной и азотной кислот переходит в диоксид марганца MnO 2 . Если MnO 2 прокаливать при температуре около 950°C, то наблюдается отщепление кислорода и образование оксида марганца состава Mn 3 O 4:
    3MnO 2 = Mn 3 O 4 + O 2
    Этот оксид можно представить как MnO·Mn 2 О 3 , и по свойствам Mn 3 О 4 соответствует смеси этих оксидов. Диоксид марганца MnO 2 - наиболее распространенное природное соединение марганца в природе, существующее в нескольких полиморфных формах. Так называемая бета-модификация MnO 2 - это уже упоминавшийся минерал пиролюзит. Ромбическая модификация диоксида марганца, гамма-MnO 2 также встречается в природе. Это - минерал рамсделит (другое название - полианит).
    Диоксид марганца нестехиометричен, в его решетке всегда наблюдается дефицит кислорода. Если оксиды марганца, отвечающие его более низким степеням окисления, чем +4, - основные, то диоксид марганца обладает амфотерными свойствами. При 170°C MnO 2 можно восстановить водородом до MnO. Если к перманганату калия KMnO 4 добавить концентрированную серную кислоту, то образуется кислотный оксид Mn 2 O 7 , обладающий сильными окислительными свойствами:
    2KMnO 4 + 2H 2 SO 4 = 2KHSO 4 + Mn 2 O 7 + H 2 O.
    Mn 2 O 7 - кислотный оксид, ему отвечает сильная, не существующая в свободном состоянии марганцовая кислота НMnO 4 . При взаимодействии марганца с галогенами образуются дигалогениды MnHal 2 . В случае фтора возможно также образование фторидов состава MnF 3 и MnF 4 , а в случае хлора - также трихлорида MnCl 3 . Реакции марганца с серой приводят к образованию сульфидов составов MnS (существует в трех полиморфных формах) и MnS 2 . Известна целая группа нитридов марганца: MnN 6 , Mn 5 N 2 , Mn 4 N, MnN, Mn 6 N 5 , Mn 3 N 2 .
    С фосфором марганец образует фосфиды составов MnР, MnP 3 , Mn 2 P, Mn 3 P, Mn 3 P 2 и Mn 4 P. Известно несколько карбидов и силицидов марганца. С холодной водой марганец реагирует очень медленно, но при нагревании скорость реакции значительно возрастает, образуется Mn(OH) 2 и выделяется водород. При взаимодействии марганца с кислотами образуются соли марганца(II):
    Mn + 2HCl = MnCl 2 + H 2 .
    Из растворов солей Mn 2+ можно осадить плохо растворимое в воде основание средней силы Mn(OH) 2:
    Mn(NO 3) 2 + 2NaOH = Mn(OH) 2 + 2NaNO 3
    Марганцу отвечает несколько кислот, из которых наиболее важны сильные неустойчивые марганцоватая кислота H 2 MnO 4 и марганцовая кислота HMnO 4 , соли которых - соответственно, манганаты (например, манганат натрия Na 2 MnO 4) и перманганаты (например, перманганат калия KMnO 4). Манганаты (известны манганаты только щелочных металлов и бария) могут проявлять свойства как окислителей (чаще)
    2NaI + Na 2 MnO 4 + 2H 2 O = MnO 2 + I 2 + 4NaOH,
    так и восстановителей
    2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl.
    В водных растворах манганаты диспропорционируют на соединения марганца(+4) и марганца(+7):
    3K 2 MnO 4 + 3Н 2 О = 2KMnO 4 + MnO 2 ·Н 2 О + 4КОН.
    При этом окраска раствора из зеленой переходит в синюю, затем в фиолетовую и малиновую. За способность изменять окраску своих растворов К. Шееле назвал манганат калия минеральным хамелеоном. Перманганаты - сильные окислители. Например, перманганат калия KMnO 4 в кислой среде окисляет сернистый газ SO 2 до сульфата:
    2KMnO 4 + 5SO 2 +2H 2 O = K 2 SO 4 + 2MnSO 4 + 2H 2 SO 4 . При давлении около 10 МПа безводный MnCl 2 в присутствии металлоорганических соединений реагирует с оксидом углерода(II) CO с образованием биядерного карбонила Mn 2 (CO) 10 .
    Применение
    Более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления (см. РАСКИСЛЕНИЕ) , десульфурации (см. ДЕСУЛЬФУРАЦИЯ) (при этом происходит удаление из стали нежелательных примесей - кислорода, серы), а также для легирования (см. ЛЕГИРОВАНИЕ) сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn 2 (CO) 10 . Соединения марганца (карбонат, оксиды и другие) используют при производстве ферритных материалов, они служат катализаторами (см. КАТАЛИЗАТОРЫ) многих химических реакций, входят в состав микроудобрений.
    Биологическая роль
    Марганец - микроэлемент (см. МИКРОЭЛЕМЕНТЫ) , постоянно присутствующий в живых организмах и необходимый для их нормальной жизнедеятельности. Содержание марганца в растениях составляет 10 -4 –10 -2 %, в животных 10 -3 –10 -5 %, некоторые растения (водяной орех, ряска, диатомовые водоросли) и животные (муравьи, устрицы, ряд ракообразных) способны концентрировать марганец. В организме среднего человека (масса тела 70 кг) содержится 12 мг марганца. Марганец необходим животным и растениям для нормального роста и размножения. Он активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза (см. ФОТОСИНТЕЗ) , влияет на проветривание и минеральные обмен.
    Человек с пищей получает ежедневно 0,4-10 мг марганца. Недостаток марганца в организме может привести к заболеванию человека. Для обеспечения нормального развития растений в почву вносят марганцевые микроудобрения (обычно в форме разбавленного раствора перманганата калия). Однако избыток марганца для человеческого организма вреден. При отравлении соединениями марганца происходит поражение нервной системы, развивается так называемый марганцевый паркинсонизм. (см. ПАРКИНСОНИЗМ) ПДК в расчете на марганец для воздуха 0,03 мг/м 3 . Токсическая доза (для крыс) - 10-20 мг.


    Энциклопедический словарь . 2009 .

    Смотреть что такое "МАРГАНЕЦ (химический элемент)" в других словарях:

      - (Manganè se франц. и англ.; Mangan нем.; Mn = 55,09 [Среднее из 55,16 (Dewar и Scott, 1883) и 55,02 (Marimac, 1884)]. Уже древние знали о существовании главной руды М., пиролюзита, употребляли этот минерал при приготовлении стекла (Плиний… …

      Марганец (лат. Manganum), Mn, химический элемент VII группы периодической системы Менделеева; атомный номер 25, атомная масса 54,9380; тяжёлый серебристо белый металл. В природе элемент представлен одним стабильным изотопом 55Mn. Историческая… … Большая советская энциклопедия

      - (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

      Марганец химический элемент. Кроме того, слово «марганец» может означать: Марганец город в Днепропетровской области Украины. Марганцовка бытовое название перманганата калия (KMnO4) … Википедия

      - (ново лат.), marganesium, испорченное слово, произведен. от magneg магнит, по сходству с ним). Металл сероватого цвета, трудноплавкий, хрупкий встречающийся в черной марганцовой руде. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

      - (Manganum), Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380; металл, tпл 1244шC. Марганец используют для легирования сталей и получения сплавов на его основе, в производстве микроудобрений. Открыт… … Современная энциклопедия

      - (лат. Manganum) Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380. Название от немецкого Manganerz марганцевая руда. Серебристо белый металл; плотность 7,44 г/см³, tпл 1244 .С. Минералы пиролюзит … Большой Энциклопедический словарь

      Марганец - (Manganum), Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380; металл, tпл 1244°C. Марганец используют для легирования сталей и получения сплавов на его основе, в производстве микроудобрений. Открыт… … Иллюстрированный энциклопедический словарь

      МАРГАНЕЦ, нца, муж. Химический элемент, металл серебристо белого цвета. | прил. марганцевый, ая, ое и марганцовый, ая, ое. Марганцевая руда. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

      Химический элемент, розовато белый металл, легко окисляющийся на воздухе. Внесение солей М. в почву (в вегетационных опытах) даже в небольших количествах сопровождалось повышением урожая нек рых раст. Возможность применения М. на удобрение… … Сельскохозяйственный словарь-справочник