Изображение на сетчатке глаза. Почему человеческий глаз видит предметы перевернутыми? Как на самом деле работают глаза

Основы психофизиологии., М. ИНФРА-М, 1998, с.57-72, Глава 2 Отв.ред. Ю.И. Александров

2.1. Строение и функции оптического аппарата глаза

Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект и обеспечивает хорошую фокусировку изображения на всей светочувствительной оболочке глаза - сетчатке. На пути к сетчатке лучи света проходят через несколько прозрачных сред роговицу, хрусталик и стекловидное тело. Определённая кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза. На сетчатке получается изображение, резко уменьшенное и перевернутое вверх ногами и справа налево (рис. 4.1 а). Преломляющую силу любой оптической системы выражают в диоптриях (D). Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила здорового глаза составляет 59D при рассматривании далеких и 70,5D при рассматривании близких предметов.

Рис. 4.1.

2.2. Аккомодация

Аккомодацией называют приспособление глаза к ясному видению объектов, расположенных на разном расстоянии (подобно фокусировке в фотографии). Для ясного видения объекта необходимо, чтобы его изображение было сфокусировано на сетчатке (рис. 4.1 б). Главную роль в аккомодации играет изменение кривизны хрусталика, т.е. его преломляющей способности. При рассматривании близких предметов хрусталик становится более выпуклым. Механизмом аккомодации является сокращение мышц, изменяющих выпуклость хрусталика.

2.3. Аномалии рефракции глаза

Две главные аномалии рефракции глаза близорукость (миопия) и дальнозоркость (гиперметропия). Эти аномалии обусловлены не недостаточностью преломляющих сред глаза, а изменением длины глазного яблока (рис. 4.1 в, г). Если продольная ось глаза слишком длинна (рис. 4.1 в), то лучи от далёкого объекта сфокусируются не на сетчатке, а перед ней, в стекловидном теле. Такой глаз называется близоруким. Чтобы ясно видеть вдаль, близорукий должен поместить перед глазами вогнутые стекла, которые отодвинут сфокусированное изображение на сетчатку (рис. 4.1 д). В отличие от этого, в дальнозорком глазу (рис. 4.1 г) продольная ось укорочена, и поэтому лучи от далёкого объекта фокусируются за сетчаткой, Этот недостаток может быть компенсирован увеличением выпуклости хрусталика. Однако при рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны. Именно поэтому для чтения они должны надевать очки с двояковыпуклыми линзами, усиливающими преломление света (рис. 4.1 е).

2.4. Зрачок и зрачковый рефлекс

Зрачок - это отверстие в центре радужной оболочки, через которое свет проходит в глаз. Он повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и устраняя сферическую аберрацию. Расширившийся при затемнении зрачок на свету быстро сужается ("зрачковый рефлекс"), что регулирует поток света, попадающий в глаз. Так, на ярком свету зрачок имеет диаметр 1,8 мм, при средней дневной освещённости он расширяется до 2,4 мм, а в темноте - до 7,5 мм. Это ухудшает качество изображения на сетчатке, но увеличивает абсолютную чувствительность зрения. Реакция зрачка на изменение освещённости имеет адаптивный характер, так как стабилизирует освещённость сетчатки в небольшом диапазоне. У здоровых людей зрачки обоих глаз имеют одинаковый диаметр. При освещении одного глаза зрачок другого тоже суживается; подобная реакция называется содружественной.

2.5. Структура и функции сетчатки

Сетчатка - это внутренняя светочувствительная оболочка глаза. Она имеет сложную многослойную структуру (рис. 4.2). Здесь расположены два вида фоторецепторов (палочки и колбочки) и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки - биполярный нейрон. Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсы в подкорковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и амакриновые клетки. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который участвует в анализе и переработке зрительной информации. Именно поэтому сетчатку называют частью мозга, вынесенной на периферию.

2.6. Структура и функции слоёв сетчатки

Клетки пигментного эпителия образуют наружный, наиболее далекий от света, слой сетчатки. Они содержат меланосомы, придающие им чёрный цвет. Пигмент поглощает излишний свет, препятствуя его отражению и рассеиванию, что способствует чёткости изображения на сетчатке. Пигментный эпителий играет решающую роль в регенерации зрительного пурпура фоторецепторов после его обесцвечивания, в постоянном обновлении наружных сегментов зрительных клеток, в защите рецепторов от светового повреждения, а также в переносе к ним кислорода и питательных веществ.

Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой зрительных рецепторов: палочек и колбочек. В каждой сетчатке человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки - фовеа (fovea centralis) содержит только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а количество палочек увеличивается, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещённостей, они обеспечивают дневное и цветовое зрение ; более светочувствительные палочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, в которой расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение постепенно уменьшается. Периферия сетчатки, на которой находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем у палочкового. Поэтому в сумерках из-за резкого понижения колбочкового зрения и преобладания периферического палочкового зрения мы не различаем цвет ("ночью все кошки серы").

Зрительные пигменты. В палочках сетчатки человека содержится пигмент родопсин, или зрительный пурпур, максимум спектра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трёх типов колбочек (сине-, зелено- и красночувствительных) содержатся три типа зрительных пигментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) областях спектра. Красный колбочковый пигмент получил название йодопсин. Молекула зрительного пигмента состоит из белковой части (опсина) и хромофорной части (ретиналь, или альдегид витамина "А"). Источником ретиналя в организме служат каротиноиды; при их недостатке нарушается сумеречное зрение ("куриная слепота").

2.7. Нейроны сетчатки

Фоторецепторы сетчатки синаптически связаны с биполярными нервными клетками (см. рис. 4.2). При действии света уменьшается выделение медиатора из фоторецептора, что гиперполяризует мембрану биполярной клетки. От неё нервный сигнал передаётся на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва.

Рис. 4.2. Схема строения сетчатки глаза:
1 - палочки; 2 - колбочки; 3 - горизонтальная клетка; 4 - биполярные клетки; 5 - амакриновые клетки; 6 - ганглиозные клетки; 7 - волокна зрительного нерва

На 130 млн. фоторецепторных клеток приходится только 1 млн. 250 тыс. ганглиозных клеток сетчатки. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединённые с одной ганглиозной клеткой, образуют её рецептивное поле [Хьюбел, 1990; Физиол. зрения, 1992]. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом количестве фоторецепторов. Это повышает световую чувствительность сетчатки, но ухудшает её пространственное разрешение. Лишь в центре сетчатки (в районе центральной ямки) каждая колбочка соединена с одной биполярной клеткой, а та, в свою очередь, соединена с одной ганглиозной клеткой. Это обеспечивает высокое пространственное разрешение центра сетчатки, но резко уменьшает его световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярами (горизонтальные клетки) и между биполярами и ганглиозными клетками (амакрины). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В сетчатку приходят и центробежные, или эфферентные, нервные волокна, приносящие к ней сигналы из мозга. Эти импульсы регулируют проведение возбуждения между биполярными и ганглиозными клетками сетчатки.

2.8. Нервные пути и связи в зрительной системе

Из сетчатки зрительная информация по волокнам зрительного нерва устремляется в мозг. Нервы от двух глаз встречаются у основания мозга, где часть волокон переходит на противоположную сторону (зрительный перекрёст, или хиазма). Это обеспечивает каждое полушарие мозга информацией от обоих глаз: в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие от левой половины каждой сетчатки (рис. 4.3).

Рис. 4.3. Схема зрительных путей от сетчатки глаза до первичной зрительной коры:
ЛПЗ - левое поле зрения; ППЗ - правое поле зрения; тф - точка фиксации взора; лг - левый глаз; пг - правый глаз; зн - зрительный нерв; х - зрительный перекрёст, или хиазма; от - оптический тракт; НКТ - наружное коленчатое тело; ЗК - зрительная кора; лп - левое полушарие; пп - правое полушарие

После хиазмы зрительные нервы называются оптическими трактами и основное количество их волокон приходит в подкорковый зрительный центр - наружное коленчатoe тело (НКТ). Отсюда зрительные сигналы поступают в первичную проекционную область зрительной коры (стриарная кора, или поле 17 по Бродману). Зрительная кора состоит из ряда полей, каждое из которых обеспечивает свои, специфические функции, получая как прямые, так и опосредованные сигналы от сетчатки и в общем сохраняя её топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

2.9. Электрическая активность центров зрительной системы

При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя (рис. 4.4а, а). Суммарный электрический ответ сетчатки глаза на свет называют электроретинограммой (ЭРГ).

Рис. 4.4. Электроретинограмма (а) и вызванный светом потенциал (ВП) зрительной коры (б):
а,b,с,d на (а) - волны ЭРГ; стрелками указаны моменты включения света. Р 1 - Р 5 - позитивные волны ВП, N 1 - N 5 - негативные волны ВП на (б)

Она может быть зарегистрирована от целого глаза: один электрод помещают на поверхность роговой оболочки, а другой - на кожу лица вблизи глаза (либо на мочку уха). В ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных клеток), этот показатель широко используется для анализа работы и диагностики заболеваний сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устремляются электрические импульсы. Ганглиозная клетка сетчатки это первый в сетчатке нейрон "классического" типа, генерирующий распространяющиеся импульсы. Описано три основных типа ганглиозных клеток: отвечающие на включение света (on - реакция), его выключение (off - реакция) и на то и другое (on-off - реакция). В центре сетчатки рецептивные поля ганглиозных клеток маленькие, а на периферии сетчатки они значительно больше по диаметру. Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки становятся меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное или боковое торможение (см. гл. 3). Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой дискретной мозаикой, состоящей из возбужденных нейронов.

Нейроны подкоркового зрительного центра возбуждаются, когда к ним приходят импульсы из сетчатки по волокнам зрительного нерва. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Пачки импульсов, генерируемые ими в ответ на вспышку света, короче, чем в сетчатке. На уровне НКТ происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной коры, а также из ретикулярной формации от слуховой и других сенсорных систем. Это взаимодействие помогает выделять наиболее существенные компоненты сигнала и, возможно, участвует в организации избирательного зрительного внимания (см. гл. 9).

Импульсные разряды нейронов НКТ по их аксонам поступают в затылочную часть полушарий головного мозга, в которой расположена первичная проекционная область зрительной коры (стриарная кора). Здесь у приматов и человека происходит значительно более специализированная и сложная, чем в сетчатке и в НКТ, переработка информации. Нейроны зрительной коры имеют не круглые, а вытянутые (по горизонтали, вертикали или по диагонали) рецептивные поля (рис. 4.5) небольшого размера [Хьюбел, 1990].

Рис. 4.5 . Рецептивное поле нейрона зрительной коры мозга кошки (А) и ответы этого нейрона на вспыхивающие в рецептивном поле световые полоски разной ориентации (Б). А - плюсами отмечена возбудительная зона рецептивного поля, а минусами - две боковые тормозные зоны. Б - видно, что этот нейрон наиболее сильно реагирует на вертикальную и близкую к ней ориентацию

Благодаря этому они способны выделять из изображения отдельные фрагменты линий с той или иной ориентацией и расположением и избирательно на них реагировать (детекторы ориентаций). В каждом небольшом участке зрительной коры по её глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют ориентационную колонку нейронов, проходящую вертикально через все слои коры. Колонка - пример функционального объединения корковых нейронов, осуществляющих сходную функцию. Группа соседних ориентационных колонок, нейроны которых имеют перекрывающиеся рецептивные поля, но разные предпочитаемые ориентации, образует так называемую сверхколонку. Как показывают исследования последних лет, функциональное объединение отдалённых друг от друга нейронов зрительной коры может происходить также за счет синхронности их разрядов. Недавно в зрительной коре найдены нейроны с избирательной чувствительностью к крестообразным и угловым фигурам, относящиеся к детекторам 2-гo порядка. Таким образом, начала заполняться "ниша" между описывающими пространственные признаки изображения простыми ориентационными детекторами и детекторами высшего порядка (лица), найденными в височной коре.

В последние годы хорошо исследована так называемая "пространственно-частотная" настройка нейронов зрительной коры [Глезер, 1985; Физиол. зрения, 1992]. Она заключается в том, что многие нейроны избирательно реагируют на появившуюся в их рецептивном поле решётку из светлых и тёмных полос определённой ширины. Так, имеются клетки, чувствительные к решётке из мелких полосок, т.е. к высокой пространственной частоте. Найдены клетки с чувствительностью к разным пространственным частотам. Считается, что это свойство обеспечивает зрительной системе способность выделять из изображения участки с разной текстурой [Глезер, 1985].

Многие нейроны зрительной коры избирательно реагируют на определённые направления движения (дирекциональные детекторы) либо на какой-то цвет (цветооппонентные нейроны), а часть нейронов лучше всего отвечает на относительную удалённость объекта от глаз. Информация о разных признаках зрительных объектов (форма, цвет, движение) обрабатывается параллельно в разных частях зрительной коры.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных потенциалов (ВП), которые у человека можно одновременно отводить от сетчатки и от зрительной коры (см. рис. 4.4 б). Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры позволяет оценить работу проекционного зрительного пути и установить локализацию патологического процесса в зрительной системе.

2.10. Световая чувствительность

Абсолютная чувствительность зрения . Чтобы возникло зрительное ощущение, свет должен обладать некоторой минимальной (пороговой) энергией. Минимальное количество квантов света, необходимое для возникновения ощущения света в темноте , колеблется от 8 до 47. Одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно. Однако количество фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Количество колбочек в рецептивном поле в центре сетчатки примерно в 100 раз меньше количества палочек в рецептивном поле на периферии сетчатки. Соответственно и чувствительность палочковой системы в 100 раз выше, чем у колбочковой.

2.11. Зрительная адаптация

При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной системы к условиям яркой освещённости называется световой адаптацией. Обратное явление (темновая адаптация) наблюдается, когда из светлого помещения человек переходит в почти не освещённое помещение. В первое время он почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увеличивается в десятки раз, а затем, в течение часа - в десятки тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Так как в темноте чувствительны только палочки, слабо освещённый предмет виден лишь периферическим зрением. Существенную роль в адаптации, помимо зрительных пигментов, играет переключение связей между элементами сетчатки. В темноте площадь возбудительного центра рецептивного поля ганглиозной клетки увеличивается из-за ослабления кольцевого торможения, что приводит к увеличению световой чувствительности. Световая чувствительность глаза зависит и от влияний, идущих со стороны мозга. Освещение одного глаза понижает световую чувствительность неосвещённого глаза. Кроме того, на чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

2.12. Дифференциальная чувствительность зрения

Если на освещённую поверхность с яркостью I падает добавочное освещение dI, то, согласно закону Вебера, человек заметит разницу в освещённости только если dI/I = K, где K константа, равная 0,01-0,015. Величину dI/I называют дифференциальным порогом световой чувствительности. Отношение dI/I при разных освещённостях постоянно и означает, что для восприятия разницы в освещённости двух поверхностей одна из них должна быть ярче другой на 1 - 1,5 %.

2.13. Яркостной контраст

Взаимное латеральное торможение зрительных нейронов (см. гл. 3) лежит в основе общего, или глобального яркостного контраста. Так, серая полоска бумаги, лежащая на светлом фоне, кажется темнее такой же полоски, лежащей на тёмном фоне. Это объясняется тем, что светлый фон возбуждает множество нейронов сетчатки, а их возбуждение притормаживает клетки, активированные полоской. Наиболее сильно латеральное торможение действует между близко расположенными нейронами, создавая эффект локального контраста. Происходит кажущееся усиление перепада яркости на границе поверхностей разной освещённости. Этот эффект называют также подчёркиванием контуров, или эффектом Маха: на границе яркого светового поля и более тёмной поверхности можно видеть две дополнительные линии (ещё более яркую линию на границе светлого поля и очень тёмную линию на границе тёмной поверхности).

2.14. Слепящая яркость света

Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление. Если в поле зрения попадают очень яркие (слепящие) объекты, то они ухудшают различение сигналов на значительной части сетчатки (так, на ночной дороге водителей ослепляют фары встречных машин). При тонких работах, связанных с напряжением зрения (длительное чтение, работа на компьютере, сборка мелких деталей), следует пользоваться только рассеянным светом, не ослепляющим глаз.

2.15. Инерция зрения, слитие мельканий, последовательные образы

Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время "инерции зрения", необходимое для возникновения зрительного ощущения, в среднем равно 0,03 - 0,1 с. Следует отметить, что это ощущение также исчезает не сразу после того, как прекратилось раздражение - оно держится ещё некоторое время. Если в темноте водить по воздуху горящей спичкой, то мы увидим светящуюся линию, так как быстро следующие одно за другим световые раздражения сливаются в непрерывное ощущение. Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит объединение отдельных ощущений, называется критической частотой слития мельканий. При средних освещённостях эта частота равна 10-15 вспышкам в 1 с. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами (24 кадра в 1 с в кино), так как зрительное ощущение от одного кадра ещё длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения.

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включённую лампу и закрыть глаза, то она видна ещё в течение некоторого времени. Если же после фиксации взгляда на освещённом предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части - тёмными, а тёмные - светлыми (отрицательный последовательный образ). Это объясняется тем, что возбуждение от освещённого объекта локально тормозит (адаптирует) определённые участки сетчатки; если после этого перевести взор на равномерно освещённый экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.

2.16. Цветовое зрение

Весь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, жёлтый и оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов даёт белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, жёлтого и синего. Если произвести смешение трёх основных цветов (красного, зеленого и синего), то могут быть получены любые цвета.

Максимальным признанием пользуется трёхкомпонентная теория Г. Гельмгольца, согласно которой цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Одни из них чувствительны к красному цвету, другие - к зеленому, а третьи - к синему. Всякий цвет оказывает воздействие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, в которых измеряли поглощение излучений с разной длиной волны в одиночных колбочках сетчатки человека.

Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам страдал ею. Поэтому аномалию цветовосприятия обозначили термином "дальтонизм". Дальтонизм встречается у 8% мужчин; его связывают с отсутствием определённых генов в определяющей пол непарной у мужчин X-хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихроматические таблицы. Люди, страдающие им, не могут быть полноценными водителями транспорта, так как они могут не различать цвет огней светофоров и дорожных знаков. Существуют три разновидности частичной цветовой слепоты: протанопия, дейтеранопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трёх основных цветов. Люди, страдающие протанопией ("краснослепые"), не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией ("зеленослепые"), не отличают зеленые цвета от тёмно-красных и голубых. При тританопии (редко встречающейся аномалии цветового зрения) не воспринимаются лучи синего и фиолетового цвета. Все перечисленные виды частичной цветовой слепоты хорошо объясняются трёхкомпонентной теорией. Каждый из них является результатом отсутствия одного из трёх колбочковых цветовоспринимающих веществ.

2.17. Восприятие пространства

Остротой зрения называется максимальная способность различать отдельные детали объектов. Её определяют по наименьшему расстоянию между двумя точками, которые различает глаз, т.е. видит отдельно, а не слитно. Нормальный глаз различает две точки, расстояние между которыми составляет 1 угловую минуту. Максимальную остроту зрения имеет центр сетчатки - жёлтое пятно. К периферии от него острота зрения намного меньше. Острота зрения измеряется при помощи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Острота зрения, определённая по таблице, выражается в относительных величинах, причём нормальная острота принимается за единицу. Встречаются люди, обладающие сверхостротой зрения (visus больше 2).

Поле зрения. Если фиксировать взглядом небольшой предмет, то его изображение проецируется на жёлтое пятно сетчатки. В этом случае мы видим предмет центральным зрением. Его угловой размер у человека составляет всего 1,5-2 угловых градуса. Предметы, изображения которых падают на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, видимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы поля зрения производят по периметру. Границы поля зрения для бесцветных предметов составляют книзу 70, кверху - 60, внутрь - 60 и кнаружи - 90 градусов. Поля зрения обоих глаз у человека частично совпадают, что имеет большое значение для восприятия глубины пространства. Поля зрения для различных цветов неодинаковы и меньше, чем для чёрно-белых объектов.

Бинокулярное зрение - это зрение двумя глазами. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображение каждой точки этого предмета попадает на так называемые корреспондирующие, или соответственные участки двух сетчаток, и в восприятии человека два изображения сливаются в одно. Если надавить слегка на один глаз сбоку, то начнёт двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, то изображение какой-либо более отдалённой точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины пространства. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый нервный образ происходит в первичной зрительной коре мозга.

Оценка величины объекта. Величина знакомого предмета оценивается как функция величины его изображения на сетчатке и расстояния предмета от глаз. В случае, когда расстояние до незнакомого предмета оценить трудно, возможны грубые ошибки в определении его величины.

Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее. Некоторое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение также то, что образ знакомого предмета на сетчатке тем больше, чем он ближе.

Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикреплённых к глазному яблоку. Движение двух глаз совершается одновременно и содружественно. Рассматривая близкие предметы, необходимо сводить (конвергенция), а рассматривая далекие предметы - разводить зрительные оси двух глаз (дивергенция). Важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1-2 с. Если на глаз поставить присоску с крохотным источником света, то человек видит его только в момент включения или выключения, так как этот раздражитель движется вместе с глазом и, следовательно, неподвижен по отношению к сетчатке. Чтобы преодолеть такое приспособление (адаптацию) к неподвижному изображению, глаз при рассматривании любого предмета производит неощущаемые человеком непрерывные скачки (саккады). Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на другие, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превышает 20 угловых градусов. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы "прослеживают" контуры изображения (рис. 4.6), задерживаясь на наиболее информативных его участках (например, в лице это глаза). Кроме скачков, глаза непрерывно мелко дрожат и дрейфуют (медленно смещаются с точки фиксации взора). Эти движения также очень важны для зрительного восприятия.

Рис. 4.6. Траектория движения глаз (Б) при осматривании изображения Нефертити (А)

С древних времен глаз был символом всеведения, тайного знания, мудрости и бдительности. И это неудивительно. Ведь именно благодаря зрению мы получаем большую часть информации об окружающем мире. С помощью глаз мы оцениваем размеры, форму, удаленность и взаиморасположение предметов, наслаждаемся многообразием красок и наблюдаем движение.

Как устроено любознательное око?

Человеческий глаз нередко сравнивают с фотоаппаратом. Роговица, прозрачная и выпуклая часть наружной оболочки, подобна линзе объектива. Вторая оболочка — сосудистая — спереди представлена радужкой, содержание пигмента в которой определяет цвет глаз. Отверстие в центре радужки — зрачок — суживаясь при ярком и расширяясь при тусклом освещении, регулирует количество света, поступающего внутрь глаза, подобно диафрагме. Вторая линза — подвижный и гибкий хрусталик окружен ресничной мышцей, которая изменяет степень его кривизны. Позади хрусталика расположено стекловидное тело — прозрачное студенистое вещество, которое поддерживает упругость и шаровидную форму глазного яблока. Лучи света, проходя сквозь внутриглазные структуры, падают на сетчатку — тончайшую оболочку из нервной ткани, выстилающую глаз изнутри. Фоторецепторы — светочувствительные клетки сетчатки, подобно фотопленке фиксируют изображение.

Почему говорят, что мы «видим» мозгом?

И все же орган зрения устроен гораздо сложнее самой современной фототехники. Ведь мы не просто фиксируем увиденное, а оцениваем ситуацию и реагируем словами, действиями и эмоциями.

Правый и левый глаз видят предметы под разным углом. Головной мозг соединяет оба изображения воедино, в результате чего мы можем оценить объем предметов и их взаиморасположение.

Таким образом, картина зрительного восприятия формируется в головном мозге.

Почему, стараясь рассмотреть что-либо, мы обращаем взгляд в эту сторону?

Наиболее четкое изображение формируется при попадании световых лучей в центральную зону сетчатки - макулу. Поэтому, стараясь рассмотреть что-либо повнимательнее, мы обращаем взгляд в соответствующую сторону. Свободное движение каждого глаза во всех направлениях обеспечивается работой шести мышц.

Веки, ресницы и брови — не только красивое обрамление?

Глазное яблоко защищено от внешних воздействий костными стенками орбиты, мягкой жировой клетчаткой, выстилающей ее полость, и веками.

Мы прищуриваемся, стараясь уберечь глаза от слепящего света, иссушающего ветра и пыли. Густые ресницы при этом смыкаются, образуя защитный барьер. А брови предназначены задерживать капельки пота, стекающие со лба.

Конъюнктива — тонкая слизистая оболочка, покрывающая глазное яблоко и внутреннюю поверхность век, содержит сотни мельчайших желёзок. Они вырабатывают «смазку», которая обеспечивает свободное движение век при смыкании и защищает роговицу от высыхания.

Аккомодация глаза

Как формируется изображение на сетчатке?

Для того чтобы понять, как формируется изображение на сетчатке, необходимо вспомнить, что при прохождении из одной прозрачной среды в другую световые лучи преломляются (т.е. отклоняются от прямолинейного распространения).

Прозрачными средами в глазу являются роговица с покрывающей ее слезной пленкой, водянистая влага, хрусталик и стекловидное тело. Наибольшей преломляющей силой обладает роговица, вторая по силе линза - хрусталик. Слезная пленка, водянистая влага и стекловидное тело обладают пренебрежимо малой преломляющей способностью.

Проходя сквозь внутриглазные среды, световые лучи преломляются и сходятся на сетчатке, формируя четкое изображение.

Что такое аккомодация?

Любая попытка перевести взгляд приводит к дефокусированию изображения и требует дополнительной настройки оптической системы глаза. Она осуществляется за счет аккомодации - изменения преломляющей силы хрусталика.

Подвижный и гибкий хрусталик прикреплен с помощью волокон цинновой связки к цилиарной мышце. При зрении вдаль мышца расслаблена, волокна цинновой связки находятся в натянутом состоянии, не позволяя хрусталику принять выпуклую форму. При попытке рассмотреть предметы вблизи цилиарная мышца сокращается, мышечный круг суживается, циннова связка расслабляется и хрусталик приобретает выпуклую форму. Тем самым увеличивается его преломляющая способность, и на сетчатке фокусируются предметы, расположенные на близком расстоянии. Этот процесс называется аккомодацией.

Почему нам кажется, что «с возрастом руки становятся короче»?

С возрастом хрусталик теряет свои эластические свойства, становится плотным и с трудом изменяет свою преломляющую способность. В результате мы постепенно утрачиваем способность к аккомодации, что затрудняет работу на близком расстоянии. При чтении мы стараемся отодвинуть газету или книгу дальше от глаз, но скоро длина рук оказывается недостаточной для обеспечения четкого зрения.

Для коррекции пресбиопии применяют собирающие линзы, сила которых увеличивается с возрастом.

Нарушения зрения

У 38% жителей нашей страны выявляются нарушения зрения, требующие очковой коррекции.

В норме оптическая система глаза способна преломлять световые лучи таким образом, чтобы они сходились точно на сетчатке, обеспечивая четкое зрение. Для того чтобы сфокусировать изображение на сетчатке, глазу с нарушением рефракции требуется дополнительная линза.

Какие бывают нарушения зрения?

Преломляющая сила глаза определяется двумя основными анатомическими факторами: длиной переднезадней оси глаза и кривизной роговицы.

Близорукость или миопия. Если длина оси глаза увеличена или роговица имеет большую преломляющую силу, изображение формируется перед сетчаткой. Такое нарушение зрения называется близорукостью или миопией. Близорукие хорошо видят на близком расстоянии и плохо вдаль. Коррекция достигается ношением очков с рассеивающими (минусовыми) линзами.

Дальнозоркость или гиперметропия. Если длина оси глаза уменьшена или преломляющая сила роговицы невелика, изображение формируется в мнимой точке позади сетчатки. Такое нарушение зрения называется дальнозоркостью или гиперметропией. Существует ошибочное мнение, что дальнозоркие хорошо видят вдаль. Они испытывают трудности при работе на близком расстоянии и нередко плохо видят вдаль. Коррекция достигается ношением очков с собирающими (плюсовыми) линзами.

Астигматизм. При нарушении сферичности роговицы существует разница в преломляющей силе по двум главным меридианам. Изображение предметов на сетчатке искаженное: одни линии четкие, другие размытые. Такое нарушение зрения называется астигматизмом и требует ношения очков с цилиндрическими линзами.

Мы привыкли видеть мир таким, какой он есть, но на самом деле на сетчатку глаза любое изображение попадает перевёрнутым. Разберёмся, почему человеческий глаз видит всё в изменённом состоянии и какую роль в этом процессе играют другие анализаторы.

Как на самом деле работают глаза?

По сути, человеческий глаз - это уникальный фотоаппарат. Вместо диафрагмы есть радужка, которая сжимается и сужает зрачок либо растягивается и расширяет его, чтобы в глаз попало достаточное количество света. Дальше хрусталик действует как линза: световые лучи фокусируются и попадают на сетчатку. Но так как хрусталик по характеристикам напоминает двояковыпуклую линзу, проходящие через него лучи преломляются и переворачиваются. Поэтому на сетчатке появляется уменьшенное перевёрнутое изображение. Однако глаз только воспринимает изображение, а обрабатывает его уже мозг. Он переворачивает картинку обратно, причём отдельно для каждого глаза, потом объединяет их в одно объёмное изображение, корректирует цвет и выделяет отдельные объекты. Только после этого процесса появляется реальная картина окружающего мира.

Считается, что новорождённый видит мир перевёрнутым до 3-й недели жизни. Постепенно мозг ребёнка учится воспринимать мир таким, какой он есть. При этом в процессе подобной тренировки важны не только зрительные функции, но и работа мышц, органов равновесия. В результате складывается истинная картина образов, явлений, предметов. Поэтому привычная для нас способность отражать действительность именно так, а не иначе, считается приобретённой.

А может ли человек научиться видеть мир вверх ногами?

Учёные решили проверить, сможет ли человек жить в перевёрнутом мире. В эксперименте участвовало два добровольца, которым надели очки, переворачивающие изображение. Один неподвижно сидел в кресле, не шевеля ни руками, ни ногами, а второй свободно двигался и оказывал помощь первому. По результатам исследования, человек, который проявлял активность, смог привыкнуть к новой реальности, а второй - нет. Подобная способность есть лишь у человека - такой же эксперимент с обезьяной привёл животное в полубессознательное состояние, и только через неделю она начала понемногу реагировать на сильные раздражители, оставаясь неподвижной.

Рецептора

Афферентного проводящего пути

3) зоны коры, куда проецируется данный вид чувствительности -

И. Павлов назвал анализатором.

В современной научной литературе анализатор чаще называют сенсорной системой . В корковом конце анализатора происходят анализ и синтез полученной информации.

Зрительная сенсорная система

Орган зрения - глаз - состоит из глазного яблока и вспомогательного аппарата. Из глазного яблока выходит зрительный нерв, соединяющий его с головным мозгом.

Глазное яблоко имеет форму шара, более выпуклого спереди. Оно лежит в полости глазницы и состоит из внутреннего ядра и окружающих его трех оболочек: наружной, средней и внутренней (рис. 1).

Рис. 1. Горизонтальный разрез глазного яблока и механизм аккомодации (схема) [Косицкий Г. И., 1985] . В левой половине хрусталик (7) уплощен при рассматривании далекого предмета, а справа он стал более выпуклым за счет аккомодационного усилия при рассматривании близкого предмета 1 - склера; 2 - сосудистая оболочка; 3 - сетчатка; 4 - роговица; 5 - передняя камера; 6 - радужка; 7 - хрусталик; 8 - стекловидное тело; 9 - ресничная мышца, ресничные отростки и ресничная связка (циннова); 10 - центральная ямка; 11 - зрительный нерв

ГЛАЗНОЕ ЯБЛОКО


Наружная оболочка называется волокнистой, или фиброзной . Задний отдел ее представляет белочную оболочку, или склеру , которая защищает внутреннее ядро глаза и помогает сохранить его форму. Передний отдел представлен более выпуклой прозрачной роговицей , через которую в глаз проникает свет.

Средняя оболочка богата кровеносными сосудами и потому называется сосудистой. В ней выделяют три части:

переднюю – радужку

среднюю - ресничное тело

заднюю - собственно сосудистую оболочку .

Радужка имеет форму плоского кольца, цвет ее может быть голубой, зеленовато-серый или коричневый в зависимости от количества и характера пигмента. Отверстие в центре радужки - зрачок - способно суживаться и расширяться. Величину зрачка регулируют специальный глазные мышцы, расположенные в толще радужки: сфинктер (суживатель) зрачка и дилататор зрачка, расширяющий зрачок. Кзади от радужки находится ресничное тело - круговой валик, внутренний край которого имеет ресничные отростки . В нем заложена ресничная мышца, сокращение которой через специальную связку передается на хрусталик и он меняет свою кривизну. Собственно сосудистая оболочка - большая задняя часть средней оболочки глазного яблока, содержит черный пигментный слой, который поглощает свет.

Внутренняя оболочка глазного яблока называется сетчаткой, или сетчатой оболочкой. Это светочувствительная часть глаза, которая покрывает изнутри сосудистую оболочку. Она имеет сложное строение. В сетчатке находятся светочувствительные рецепторы - палочки и колбочки.


Внутреннее ядро глазного яблока составляют хрусталик, стекловидное тело и водянистая влага передней и задней камер глаза.

Хрусталик имеет форму двояковыпуклой линзы, он прозрачен и эластичен, расположен позади зрачка. Хрусталик преломляет входящие в глаз световые лучи и фокусирует их на сетчатке. В этом ему помогают роговица и внутриглазные жидкости. При помощи ресничной мышцы хрусталик меняет свою кривизну, принимая форму, необходимую то для "дальнего", то для "ближнего" видения.

Позади хрусталика находится стекловидное тело - прозрачная желеобразная масса.

Полость между роговицей и радужкой составляет переднюю камеру глаза, а между радужкой и хрусталиком - заднюю камеру. Они заполнены прозрачной жидкостью - водянистой влагой и сообщаются между собой через зрачок. Внутренние жидкости глаза находятся под давлением, которое определяют как внутриглазное давление. При повышении его могут возникнуть нарушения зрения. Повышение внутриглазного давления является признаком тяжелого заболевания глаз - глаукомы.

Вспомогательный аппарат глаза состоит из защитных приспособлений, слезного и двигательного аппарата.

К защитным образованиям относятся брови, ресницы и веки. Брови предохраняют глаз от пота, стекающего со лба. Ресницы, находящиеся на свободных краях верхнего и нижнего века, защищают глаза от пыли, снега, дождя. Основу века составляет соединительнотканная пластинка, напоминающая хрящ, снаружи она покрыта кожей, а изнутри - соединительной оболочкой - конъюнктивой . С век конъюнктива переходит на переднюю поверхность глазного яблока, за исключением роговицы. При сомкнутых веках образуется узкое пространство между конъюнктивой век и конъюнктивой глазного яблока - конъюнктивальный мешок.

Слезный аппарат представлен слезной железой и слезовыводящими путями . Слезная железа занимает ямку в верхнем углу латеральной стенки глазницы. Несколько ее протоков открывается в верхний свод конъюнктивального мешка. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезной жидкости в сторону медиального угла глаза способствуют мигательные движения век. Во внутреннем углу глаза слеза скапливается в виде слезного озера, на дне которого виден слезный сосочек. Отсюда через слезные точки (точечные отверстия на внутренних краях верхнего и нижнего век) слеза попадает сначала в слезные канальцы, а затем в слезный мешок. Последний переходит в носослезный проток, по которому слеза попадает в полость носа.

Двигательный аппарат глаза представлен шестью мышцами . Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые мышцы (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза движутся совместно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза исчерченные и сокращаются произвольно.

Физиология зрения

Светочувствительные рецепторы глаза (фоторецепторы) - колбочки и палочки, располагаются в наружном слое сетчатки. Фоторецепторы контактируют с биполярными нейронами, а те в свою очередь - с ганглиозными. Образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс. Отростки ганглиозных нейронов образуют зрительный нерв.

По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних холмиков пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные (рефлекторные) зрительные центры. От ядер верхних холмиков начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные движения, связанные со зрением. Ядра верхних холмиков также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза.

Адекватным раздражителем для глаза является свет - электромагнитные волны длиной 400 - 750 нм. Более короткие - ультрафиолетовые и более длинные - инфракрасные лучи глазом человека не воспринимаются.

Преломляющий световые лучи аппарат глаза - роговица и хрусталик, фокусирует изображение предметов на сетчатке. Луч света проходит через слой ганглиозных и биполярных клеток и достигает колбочек и палочек. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в Галочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Наружные сегменты погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов.

В сетчатке насчитывают около 7 млн. колбочек и примерно 130 млн. палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность к свету которых в 500 раз меньше,- это аппарат дневного и цветового видения. Цветоощущение, мир красок доступен рыбам, амфибиям, рептилиям и птицам. Доказывается это возможностью выработать у них условные рефлексы на различные цвета. Не воспринимают цвета собаки и копытные животные. Вопреки прочно установившемуся представлению, что быки очень не любят красный цвет, в опытах удалось доказать, что они не могут отличить зеленого, синего и даже черного от красного. Из млекопитающих только обезьяны и люди способны воспринимать цвета.

Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое пятно, в центре его есть углубление - центральная ямка - место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета.

В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки.

Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и оно не принимает участия в зрении.

Построение изображения на сетчатке.

Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение.

Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас "низ" там, куда направлена сила земного притяжения.


Рис. 2. Построение изображения в глазу, а, б - предмет: а", б" - его перевернутое и уменьшенное изображение на сетчатке; С - узловая точка, через которую лучи идут без преломления, аα - угол зрения

Острота зрения.

Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются.

Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.

Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.

Поле зрения . Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.

Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь - с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.

Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.

Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.

Поле зрения определяют при помощи особого прибора - периметра (рис. 133), состоящего из полукруга, разделенного на градусы, и подставки для подбородка.


Рис. 3. Определение поля зрения при помощи периметра Форстнера

Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.

Поле зрения наибольшее кнаружи, к виску - 90°, к носу и кверху и книзу - около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.

Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран - сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению равноудаленных предметов. Эта его способность носит название аккомодации.

Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.

С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков - двояковыпуклых линз, которые надевают при чтении.

Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы (рис. 134).


Рис. 4. Рефракция при нормальном зрении (а), при близорукости (б) и дальнозоркости (г). Оптическая коррекция близорукости (в) и дальнозоркости (д) (схема) [Косицкий Г. И., 1985]

Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.

Адаптация глаза.

При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.

Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4 - 6 мин.

При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000 - 400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы - адаптомеры.

Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение.

Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас "низ" там, куда направлена сила земного притяжения.

Рис. 2. Построение изображения в глазу, а, б - предмет: а", б" - его перевернутое и уменьшенное изображение на сетчатке; С - узловая точка, через которую лучи идут без преломления, аα - угол зрения

Острота зрения.

Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются.

Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.

Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.

Поле зрения . Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.

Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь - с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.

Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.

Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.



Поле зрения определяют при помощи особого прибора - периметра (рис. 133), состоящего из полукруга, разделенного на градусы, и подставки для подбородка.


Рис. 3. Определение поля зрения при помощи периметра Форстнера

Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.

Поле зрения наибольшее кнаружи, к виску - 90°, к носу и кверху и книзу - около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.

Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран - сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению равноудаленных предметов. Эта его способность носит название аккомодации.

Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.



С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков - двояковыпуклых линз, которые надевают при чтении.

Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы (рис. 134).


Рис. 4. Рефракция при нормальном зрении (а), при близорукости (б) и дальнозоркости (г). Оптическая коррекция близорукости (в) и дальнозоркости (д) (схема) [Косицкий Г. И., 1985]

Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.

Адаптация глаза.

При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.

Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4 - 6 мин.

При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000 - 400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы - адаптомеры.