Понятие химиотерапии. История развития. Понятие о химиотерапии. История открытия химиопрепаратов Война, приносящая огромную прибыль монополиям





и продуцировать при этом антитела (так же, как В-лимфоцит) к антигену, использованному для иммунизации.
Гибридомы, продуцирующие антитела, могут выращиваться в больших масштабах в культиваторах или специальных аппаратах. Поскольку образующиеся гибридомой антитела «произошли» от одной родоначальной клетки (В-лимфоцита), то они называются моноклональными антителами. Моноклональные антитела широко используются для создания диагностических препаратов, а также в некоторых случаях применяются с лечебной целью (в онкологии).
Многие фармакологические средства до сих пор получают путем переработки лекарственных трав. Для этого необходимо орга-низовать сбор этих трав или выращивать их на плантации. Био-технология и генетическая инженерия позволяют получать эти же природные фармакологические вещества путем выращивания в промышленных условиях культур клеток лекарственных растений. В настоящее время налажен выпуск таким способом десятков лекарственных средств, среди них женьшень, строфантин и др.
Глава 7
ХИМИОТЕРАПЕВТИЧЕСКИЕ ПРЕПАРАТЫ. АНТИБИОТИКИ
7.1. Понятие о химиотерапии и антибиотиках
Химиотерапия - специфическое антимикробное, антипаразитарное лечение при помощи химических веществ. Эти вещества обладают важнейшим свойством - избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.
Антибиотики (от греч. anti bios - против жизни) - химио- терапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.
Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действуют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат - сальварсан (соединение мы-шьяка, убивающее возбудителя, но безвредное для микроорга-низма).
В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество - пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрептококковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г.Домагк был удостоен Нобелевской премии. Позднее было выяснено, что в организме происходит распад пронтозила с образованием сульфаниламида, обладающего антибактериальной активностью как in vivo, так и in vitro.
Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что сульфаниламиды являются структурными аналогами парааминобен- зойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бактерии, используя сульфаниламид вместо ПАБК, погибают.

ПАБК Сульфаниламид
Первый природный антибиотик был открыт в 1929 г. английским бактериологом А.Флемингом. При изучении плесневого гриба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А. Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.
В настоящее время имеется огромное количество химиотера- певтических препаратов, которые применяются для лечения за-болеваний, вызванных различными микроорганизмами.


Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П. Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действуют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат - сальварсан (соединение мышьяка, убивающее возбудителя, но безвредное для макроорганизма).

В 90-х годах 19 века русский врач Д. Л. Романовский установил, что лечебное действие хинина при малярии является этиотропным, т. е. направленным на возбудителя болезни.

В первом десятилетии текущего столетия немецкий исследователь П. Эрлих предпринял планомерные поиски лекарственных веществ, действующих на возбудителей некоторых инфекций (при трипанозомозах, спирохетозах).

В результате длительных исследований Эрлиху и его сотрудникам удалось синтезировать сальварсан, обладающий лечебным действием при трипанозомных (сонная болезнь) и спирохетных (сифилис, возвратный тиф, фрамбезия) инфекциях. Практическое значение приобрел неосальварсан (новарсенол), обладающий значительно лучшей растворимостью, чем сальварсан. Эрлих ввел термин «химиотерапия» и сформулировал основные ее принципы.

В 1907-1908 гг. в химиотерапию были введены соединения сурьмы (Мениль и др.).

В 1916 г. немецкий исследователь Рель открыл высокоактивный трипаноцидный препарат германии (наганин), который приобрел широкое применение для борьбы с трипанозомозами человека и животных. С этого момента изыскание антипротозойных и противоспирохетных средств приобрело широкий размах. В 1921 г. было открыто противосифилитическое действие соединений висмута (Сазерак и Левадити, Франция). В 1926 г. был предложен противомалярийный препарат плазмохин (Рель и др., Германия). В 30-х годах XX века в Германии был открыт один из лучших антималярийных препаратов атебрин (акрихин) и мощное пироплазмоцидное средство - акаприн (пироплазмин). В 1935 г. немецкий исследователь Домагк опубликовал сообщение о первом антибактериальном химиотерапевтическом средстве - пронтозиле (красный стрептоцид) чем было положено начало созданию химиотерапии бактериальных инфекций.

Крупной вехой на пути развития химиотерапии является введение в практику в 40-х годах антибиотиков - пенициллина (Флеминг и Флори) и стрептомицина (Ваксман).

Открытие стрептомицина положило начало химиотерапии туберкулеза, крупные успехи которой связаны с открытием парааминосалициловой кислоты (1946) и производных гидразида изоникотиновой кислоты (1952). Параллельно с этим появляется много других высокоактивных химиотерапевтических препаратов: палюдрин, хлорохин, дараприн и примахив

(противомалярийные препараты), антрицид (противотрипанозомное средство), антибиотики широкого спектра действия (хлорамфеникол, хлор-тетрациклин, окситетрациклин, тетрациклин, эритромицин), противогрибковые антибиотики (нистатин, амфотерицин).

В 40-х годах 20 века было положено начало химиотерапии злокачественных новообразований.

В 1935 г. другой немецкий химик Г. Домагк обнаружил среди анилиновых красителей вещество - пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрептококковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г. Домагк был удостоен Нобелевской премии. Позднее было выяснено, что в организме происходит распад пронтозила с образованием сульфаниламида, обладающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р. Вудсом, установившим, что сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бактерии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. английским бактериологом А. Флемингом. При изучении плесневого гриба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

Как уже сказано, химиотерапевтическими средствами мы называем такие, которые губительно действуют на возбудителя болезни. Следовательно, эти препараты должны угнетать жизнедеятельность микроорганизмов и вне макроорганизма. Действительно, в подавляющем большинстве случаев это имеет место: химиотерапевтические вещества подавляют развитие микроорганизмов in vitro часто даже в более низких концентрациях, чем те, которые получаются в крови и органах макроорганизма при использовании препаратов с лечебной целью. В тех немногих случаях, когда химиотерапевтические препараты слабо влияют на микробы in vitro, доказано их превращение в организме хозяина в активные соединения.

Следует иметь в виду, что только немногие вещества, активные против микробов in vitro, обладают химиотерапевтическим действием при введении в организм. Очень многие вещества действуют губительно не только на микробные клетки, но и на клетки органов и тканей больного организма. Другие же вещества, хотя и не обладают высокой токсичностью, однако теряют свою антимикробную активность в жидкостях и тканях организма. Естественно, что ни в первом, ни во втором случае вещества не могут быть использованы в качестве химиотерапевтических средств. Поэтому при экспериментальном изучении новых химиотерапевтических препаратов ни в коем случае нельзя ограничиться изучением активности препаратов in vitro. Необходимо изучать лечебное действие препаратов у животных, зараженных соответствующим возбудителем, или, как принято выражаться, на экспериментальных инфекционных моделях.

На инфекционных моделях изучают как эффективные, так и токсические дозы препаратов. Соотношение между первыми и вторыми дозами называют химиотерапевтическим индексом. Он характеризует так называемую терапевтическую широту, т. е. расстояние между лечебными и токсическими дозами. Чем больше терапевтическая широта, тем лучше, при прочих равных условиях, химиотерапевтический препарат.

Химиотерапевтические вещества могут оказывать как профилактическое, так и лечебное действие, т. е. могут предупреждать или лечить инфекцию. Лечебное действие может быть радикальным или митигирующим. В последнем случае болезнь не излечивается полностью, а лишь значительно смягчается ее течение.

Химиотерапевтические препараты лишь подавляют жизнедеятельность микроорганизма и прекращают его размножение. Окончательное уничтожение возбудителя инфекции зависит от защитных сил макроорганизма (последние не должны подавляться химиотерапевтическими препаратами).

В процессе лечения может возникать устойчивость (резистентность) возбудителя к химиотерапевтическому препарату. Особенно часто это наблюдается при длительном лечении хронических инфекций (например, туберкулеза). Возникновение устойчивости снижает эффективность лечения. Лекарственная устойчивость имеет групповую специфичность. Это означает, что микробы, устойчивые к какому-либо хпмиотерапевтическому веществу, будут устойчивы также и к другим веществам той же химической группы (т. е. обладающим таким же интимным механизмом действия на микробную клетку), но они сохраняют полную чувствительность к препаратам, принадлежащим к другим химическим рядам. Это обстоятельство необходимо учитывать при длительном лечении хронических инфекций.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения заболеваний, вызванных различными микроорганизмами.

При комбинированном применении одновременно нескольких химиотерапевтических веществ резистентность микробов развивается с большим трудом или совершенно не развивается. Поэтому такие хронические инфекции, как туберкулез или проказа (лепра), в настоящее время лечат путем комбинированного применения нескольких химиотерапевтических препаратов.

Лекарственная устойчивость может возникать и при воздействии вещества на возбудитель in vitro. Этим методом нередко пользуются для изучения законов развития описываемого интересного феномена. Лекарственноустойчивые штаммы бактерий могут отличаться от исходных и по другим свойствам (вирулентность, культуральные, биохимические и антигенные свойства), однако это имеет место не всегда.

Длительное воздействие лекарственного вещества на бактерии может привести к появлению так называемых лекарственнозависимых штаммов. Последние растут и развиваются только в присутствии лекарственного препарата, а без него роста не происходит. Лекарственнозависимые штаммы не вызывают у животных заболевания, однако если одновременно вводится и лекарственное вещество, то развивается смертельная инфекция.

Действие химиотерапевтических препаратов характеризуется известной специфичностью. Нельзя один и тот же препарат применять для лечения любой инфекции. Однако эта специфичность в большинстве случаев не является очень строгой. Иногда препараты действуют лишь на несколько видов возбудителей, в других случаях их действие распространяется на очень многие болезни (химиотерапевтические препараты с узким и широким спектром действия).

В связи с указанным обстоятельством возникает затруднение при классификации химиотерапевтических препаратов по виду заболеваний, на которые они действуют. Наиболее последовательной была бы классификация препаратов по химическим группам. Однако в этом случае возникают неудобства, связанные с отрывом описания от медицинского назначения препаратов. В связи с этим мы прибегли к разделению препаратов по признаку их влияния на группы инфекций с последующей классификацией по химическому принципу.



Термин “химиотерапия” (chemo - химия, terapia - лечение) введен Эрлихом в 1906 году, применившим для лечения инфекционных и протозойных болезней химические вещества.

Химиотерапия – уничтожение возбудителей заболеваний в организме животных с помощью химических веществ.

Химиотерапевтические вещества - это вещества, использующиеся для уничтожения возбудителей заболеваний, находящихся в организме животных.

Требования, предъявляемые к химиотерапевтическим веществам:

    должны обладать избирательным действием на возбудителей;

    должны быть эффективны в малых дозах;

    должны быстро проявлять свое действие;

    должны сохранять активность в тканях, жидкостях организма;

    должны быть мало - или нетоксичны для организма;

    должны повышать защитные силы организма, т.е. проявлять стимулирующее действие;

    по возможности должны применяться групповым методом (с кормом всем животным сразу).

В качестве химиотерапевтических средств применяют:

Антимикробные препараты (антибиотики, сульфаниламидные препараты, нитрофураны, производные хиноксалина, хинолона и т.д.);

Противовирусные;

Противопротозойные (лекарственные краски, кокцидиостатики и т.д.);

Принципы химиотерапии:

1. Точная постановка диагноза заболевания, т.е. выявление возбудителя, вызвавшего данное заболевание.

2. Использование наиболее эффективно действующих лекарственных веществ. Это достигается предварительным определением чувствительности возбудителя к имеющимся средствам.

3. Лечение необходимо начинать как можно раньше, так как в начале заболевания лекарственные вещества оказывают наибольший эффект и сопротивляемость организма к заболеванию еще высокая.

4. Лекарственные вещества необходимо применять в течение определенного интервала времени (т.е. назначают на курс лечения) (7 - 10 дней).

5. Для поддержания в крови на протяжении всего лечения бактериостатической концентрации препарата, его первая доза должна быть ударной, а далее необходимо соблюдать кратность применения лекарственного вещества.

6. Животных лечат до полного биологического выздоровления, т.е. до тех пор, пока его организм полностью освободится от возбудителя, а не до клинического выздоровления (когда исчезают клинические признаки заболевания).

7. В связи с тем, что некоторые химиотерапевтические средства могут оказывать неблагоприятное действие на организм (аллергические реакции, дисбактериоз, нейротоксическое действие и т.д.) необходимо при их назначении учитывать видовую и индивидуальную чувствительность животных.

- 5 - Механизм действия противомикробных веществ

Антимикробное действие может осуществляться путем:

    непосредственного действия лекарственного вещества на микроорганизм;

    путем создания неблагоприятных условий жизнедеятельности для возбудителя болезни в среде его обитания;

    путем активизации защитных сил организма.

Механизм действия лекарственного вещества на микробную клетку. Препарат адсорбируется в возбудителе в количествах, более значительных, чем в тканях животного, нарушает процессы метаболизма, которые крайне необходимы для жизни возбудителя и не имеют существенного значения для макроорганизма - дегидратация, денатурирование белка, окисление, осмотического режима и проницаемости клеточных мембран, блокирование или разрушение ферментов.

В 2016 году в одних только Соединенных Штатах Америки будет диагностировано более 1 650 000 новых случаев рака. В то же время приблизительно 600 000 человек умрут от онкологии. По статистике, из каждых 100 тысяч мужчин и женщин более 450 человек сталкиваются с этой страшной болезнью.

Роль определенных факторов

При определенных условиях в какой-то момент жизни мужчины имеют 50-процентный шанс развития клеточных мутаций. Триггерами заболевания могут стать вредные привычки, ограниченность питания, наследственная предрасположенность, возраст, экология, стрессы и другие факторы. Каждая третья женщина в возрасте после 60 лет имеет риск развития злокачественных образований. Эта пугающая статистика, не правда ли?

Горькая правда жизни

Когда наружу выходит слишком много информации о том или ином недуге, а также о способах его лечения, простому обывателю довольно легко запутаться. Ни для кого не секрет, что небольшая группа корпораций пытается контролировать почти каждый аспект нашей жизни: от энергетики до образования. Фармацевтические монополии были созданы для того, чтобы наживаться на боли других людей, а не помогать им с лечением. Такова горькая правда жизни.

Почему современная медицина основана на фармакологических препаратах?

Фармацевтическая монополия была создана более 100 лет назад, и все это время медикаментозное лечение считается официально признанным и разрешенным. Выпускники медицинских вузов становятся заложниками этой системы. Если ты не хочешь потерять работу, ты будешь назначать то, что рекомендовано в медицинских справочниках. Получается, что фармацевтическая индустрия была создана для того, чтобы болезнь стала средством для прибыльного бизнеса. И теперь эта отрасль является поистине золотой жилой, а онкология (в виду массовости зарегистрированных случаев) - это всего лишь очередной, но очень хороший способ заработать.

Этот бизнес построен на обмане

Некоторые болезни практически не поддаются излечению, однако люди регулярно слышат новости о том, как появляются новые лекарства, которые могут избавить больных от страданий. Но бизнес-модель не будет процветать, если существующие болезни будут чудесным образом исцеляться. Иными словами, людям надо давать надежду, рассказывать о новых препаратах, и в то же время делать так, чтобы эти препараты не лечили.

Устранение конкурентов

Все, что не связано с фармакологической индустрией, должно быть объявлено вне закона, а люди, проповедующие целительство и нетрадиционные методы медицины, должны быть названы шарлатанами. В 1913 году в Америке была даже создана внутренняя ассоциация, которая получила звучное название «Департамент пропаганды». Это стало усилением мер для поддержания монополий. Отныне все альтернативные способы лечения считаются неприемлемыми. Так, например, химиотерапия считается единственным эффективным способом борьбы с онкологическими заболеваниями.

История химиотерапии

Первые химиотерапевтические компоненты были открыты еще во время Второй мировой войны, когда в Италии в качестве боевого отравляющего вещества на солдатах был опробован горчичный газ. После проведения вскрытия погибших от отравления бойцов было установлено резкое падение в их крови уровня лимфоцитов. Медики быстро ухватились за идею: а что если при лейкемии или лимфоме использовать горчичный газ в качестве меры, понижающей уровень лейкоцитов? Так началась история химиотерапии.

Первые химиотерапевтические препараты (некоторые из них используются и сегодня) действительно произошли от горчичного газа. Это вещество использовалось для массового уничтожения солдат в мировых войнах. Если бы люди только знали о свойствах горчичного газа, они никогда бы не согласились на курс химиотерапии. Также становится понятным, почему подавляющее количество онкологов никогда не прибегнут к этому методу лечения, если у кого-то из них обнаружится рак. Они будут препятствовать химиотерапии, если речь идет о сохранении здоровья у членов их семьи. Это слишком токсичный способ, который борется с одним злокачественным образованием и тут же запускает множество других в виде метастаз. Только вот каждый онколог настоятельно рекомендует эту меру своим пациентам.

Война, приносящая огромную прибыль монополиям

Борьба с раком на самом высшем уровне ведется с 1971 года. Однако люди поставлены в заведомо проигрышную ситуацию, ведь 90 процентов онкологов признаются, что никогда бы не применили химиотерапию по отношению к себе и своим близким. Теперь, по прошествии более 40 лет, эта бесконечная война с раком все еще продолжается. Одна из причин - это баснословные прибыли, идущие в карман фармацевтическим монополиям. Кажется, кому-то не выгодно, чтобы эта затяжная война прекращалась. В первую очередь это относится к так называемым методам терапии, которые используются при лечении рака.

Невозможность излечения

Химиотерапия и радиация используют самые сильные токсины, которые известны людям на сегодняшний день. Фактически эти токсины продаются пациентам как вещества, способные убивать злокачественную опухоль. Однако эти вещества также уничтожают и нормальные клетки в организме пациента. Они проникают во внутренние органы и повреждают их. Фактически химиотерапия и радиация делают невозможным излечение от рака. Вместо избавления происходит формирование новых опухолей. Только многие пациенты об этом не подозревают.

Неутешительный прогноз

Эксперты дают неутешительный прогноз. Предполагается, что к 2020 году половина диагностированных случаев рака явится следствием вины медицины. Химиопрепараты и радиация являются наиболее известными канцерогенами. А это значит, медицинский истеблишмент скоро станет одним из ведущих виновников рака. На самом деле вовсе не рак убивает людей. По статистике, 42-48 процентов пациентов умирают от кахексии, истощения организма, вызванного потерей белка вследствие терапевтических мер.

Все остальные больные также умерли от лечения, а не от самой опухоли. У пациентов, прошедших химиотерапию, отказывают печень и почки, развиваются пневмония и сепсис. К сожалению, 97 процентов людей, прошедших курс химиотерапии, умирают в течение 5 лет. Это подтверждает крупное исследование, проведенное онкологами в 2004 году. С тех пор мало что изменилось.

Виды химиотерапии

В соответствии с тем, на уничтожение чего направлена химиотерапия, выделяют:

антибактериальную химиотерапию, или антибиотикотерапию;

противогрибковую химиотерапию;

противоопухолевую (цитостатическую, или цитотоксическую) химиотерапию;

противовирусную химиотерапию;

Принятие других препаратов во время химиотерапии

Некоторые лекарства могут вступать в реакцию с препаратами, используемыми при химиотерапии. Врач должен изучить список всех лекарств, которые принимает пациент, прежде чем приступить к лечению. В такой список должны входить все принимаемые средства, в том числе витамины, препараты против аллергии и др., а также минеральные или растительные добавки.

Антибиотики.

В борьбе за существование микроорганизмы создали и усовершенствовали оружие, которое позволяет им отстаивать свою среду обитания. Это оружие – специальные вещества, названные антибиотиками. Они безвредны для хозяина, но смертельно опасны для его врагов. С их помощью микроорганизмы успешно защищают, а при случае и расширяют “свои территории”. Наблюдение за жизнью микроорганизмов, позволившее человеку создать новый класс лекарств – антибиотики, заставило отступить многие ранее непобедимые болезни.

Считается, что открытие антибиотиков прибавило примерно 20 лет к средней продолжительности жизни человека в развитых странах. В каждой семье есть человек, который остался в живых благодаря антибиотикам. Микробиолог Зинаида Ермольева, получившая в 1942 году первые в СССР образцы пенициллина, объясняла значение антибиотиков так: “Если бы в XIX веке был пенициллин, Пушкин бы не умер от раны”.

История антибиотиков насчитывает чуть более 70 лет, хотя роль микроорганизмов в развитии инфекционных заболеваний была известна уже со второй половины XIX века. Начало этой истории положили наблюдения Флеминга за борьбой микроорганизмов между собой.

Термин “антибиотики” ввел в обращение американский микробиолог З. Ваксман, получивший в 1952 году Нобелевскую премию за открытие стрептомицина. Именно он предложил называть все вещества, вырабатываемые микроорганизмами для уничтожения или нарушения развития других микроорганизмов-противников, антибиотиками. Сам же термин антибиос (“анти” – против, “биос” – жизнь), отражающий форму сосуществования микроорганизмов в природе, когда один организм убивает или подавляет развитие “противника” путем выработки особых веществ, был придуман Л. Пастером, вложившим в него определенный смысл – “жизнь – против жизни” (а не “против жизни”).

Первый антибиотик – пенициллин – был выделен из плесневого гриба пенициллиум нотатум, чему и обязан своим названием. За его создание в 1945 году три ученых Флеминг, Флори и Чейн были удостоены Нобелевской премии. История создания первого в мире антибиотика довольно интересна. В 20-х годах в одной из лондонских больниц работал Александр Флеминг. Он готовил для учебника по бактериологии статью о стрептококках (вид бактерий) и ставил эксперименты. Однажды Флеминг обнаружил, что плесень, случайно попавшая на поверхность среды с культурой стрептококка, как бы растворила ее. Стало очевидным, что плесень вырабатывает какое-то удивительное вещество, с огромной силой действующее на бактерий. Это гипотетическое вещество Флеминг назвал пенициллином (от латинского penicillium – плесень). В 1929 году он опубликовал свое открытие, а в 1936 – рассказал о нем на II Международном конгрессе микробиологов. Однако научная общественность осталась равнодушной, отчасти может быть из-за того, что Флеминг, по признанию современников, был плохим оратором. Дальнейшая разработка пенициллина была связана с работой, так называемой Оксфордской группы, во главе которой стояли Говард Флори и Эрнст Чейн. Чейн занимался выделением пенициллина, а Флори – испытанием его на животных. В результате был получен малотоксичный и эффективный пенициллин. 12 февраля 1941 года пенициллин был впервые применен для лечения человека. Первым пациентом оказался лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, через день он уже ел без посторонней помощи. Но запас с таким трудом полученного пенициллина закончился, и больной скончался.

Промышленный выпуск препарата был налажен только в 1943 году в США, куда Флори передал технологию получения нового лекарства. Причем американский штамм (подвид) плесени был найден на одной из гнилых дынь, выброшенных на помойку.

В нашей стране пенициллин создали в 1942 году два биолога З.В. Ермольева и Т.И. Балезина с сотрудниками. В одном из московских подвалов они обнаружили штамм пенициллиум крустозум, который оказался продуктивнее английских и американских родичей. Это отметил и Флори, приезжавший в январе 1944 года в СССР с американским штаммом. Он был удивлен и восхищен тем, что у нас есть более продуктивный штамм и уже налажено промышленное производство пенициллина.

У пенициллина оказалось столько достоинств, что он до сих пор широко применяется в медицинской практике. Главные из них – высочайшая антибактериальная активность и безопасность для человека. Поначалу его действие вообще производило впечатление волшебной палочки: очищались гнойные раны, зарастали кожей ожоги и отступала гангрена. Так получилось, что изучение свойств пенициллина совпало по времени со второй мировой войной, и он быстро нашел применение для лечения раненых солдат. Введение пенициллина сразу после ранения позволяло предупреждать нагноение ран и заражение крови. В результате в строй возвращались свыше 70% раненых.

После того, как была доказана возможность получения антибиотиков из микроорганизмов, открытие новых препаратов стало вопросом времени. И, действительно, в 1939 году был выделен грамицидин, в 1942 – стрептомицин, в 1945 – хлортетрациклин, в 1947 – левомицетин (хлорамфеникол), а уже к 1950 году было описано более 100 антибиотиков. Многие антибиотики были выделены из микроорганизмов, обитающих в почве. Оказалось, что в земле живут смертельные враги многих болезнетворных для человека микроорганизмов – возбудителей тифа, холеры, дизентерии, туберкулеза и других. Так стрептомицин, который с успехом применяется до сих пор для лечения туберкулеза, тоже был выделен из почвенных микроорганизмов. При этом, чтобы отобрать нужный штамм, З. Ваксман (автор стрептомицина) исследовал за три года более 500 культур, прежде чем нашел подходящую – выделяющую в среду обитания достаточные количества (больше, чем другие) стрептомицина.

Поиск новых антибиотиков – процесс длительный, кропотливый и дорогостоящий. В ходе подобных исследований изучаются и отбраковываются сотни, а то и тысячи культур микроорганизмов. И только единицы отбираются для последующего изучения. Но это еще не значит, что они станут источником новых лекарств. Низкая продуктивность культур, сложность процессов выделения и очистки лекарственных веществ ставят дополнительные, порой непреодолимые барьеры на пути новых препаратов. Поэтому со временем, когда очевидные возможности были уже исчерпаны, разработка каждого нового природного препарата стала чрезвычайно сложной исследовательской и экономической задачей. А новые антибиотики были очень нужны. Выявлялись все новые возбудители инфекционных болезней, и спектр активности существующих препаратов становился недостаточным для борьбы с ними. К тому же микроорганизмы быстро приспосабливались и становились невосприимчивыми к действию казалось бы уже проверенных препаратов. Поэтому, наряду с поиском природных антибиотиков, активно велись работы по изучению структуры существующих веществ, с тем, чтобы модифицируя их, получать новые и новые, более эффективные и безопасные препараты. Таким образом, следующим этапом развития антибиотиков стало создание полусинтетических, сходных по строению и по действию с природными антибиотиками, веществ.

Сначала в 1957 году удалось получить феноксиметилпенициллин, устойчивый к действию желудочного сока, который можно принимать в виде таблеток. Природные пенициллины, полученные ранее феноксиметилпенициллина, были неэффективны при приеме внутрь, так как они разрушались в кислой среде желудка. Впоследствии был создан метод получения полусинтетических пенициллинов. Для этого молекулу пенициллина “разрезали” с помощью фермента пенициллиназы и, используя одну из частей, создавали новые соединения. Таким способом удалось получить препараты более широкого спектра действия (амоксициллин, ампициллин, карбенициллин), чем исходный пенициллин.

Другой антибиотик, цефалоспорин, выделенный в 1945 году из сточных вод на острове Сардиния, дал жизнь новой группе полусинтетических антибиотиков – цефалоспоринам, оказывающим сильнейшее антибактериальное действие и практически безопасным для человека. Цефалоспоринов получено уже более 100. Некоторые из них способны убивать и грамположительные, и грамотрицательные микроорганизмы, другие действуют на устойчивые штаммы бактерий.

В настоящее время число выделенных, синтезированных и изученных антибиотиков исчисляется десятками тысяч, около 1 тысячи применяются для лечения инфекционных болезней, а также для борьбы со злокачественными заболеваниями.

Использование антибиотиков отодвинуло на второй план многие ранее смертельные заболевания (туберкулез, дизентерия, холера, гнойные инфекции, воспаление легких и многие другие). С помощью антибиотиков удалось значительно снизить детскую смертность. Большую пользу приносят антибиотики в хирургии, помогая ослабленному 3хирург XIX века А. Вельпо с горечью писал: “Укол иглой уже открывает дорогу смерти”. Эпидемии послеоперационной горячки уносили в могилу до 60% всех прооперированных, и такая огромная смертность тяжелым грузом лежала на совести хирургов. Теперь с большинством больничных инфекций можно успешно бороться при помощи антибиотиков. Так началось время, которое врачи справедливо называют “веком антибиотиков”.

Существуют антибиотики с антибактериальным, противогрибковым и противоопухолевым действием. В этом разделе мы рассматриваем антибиотики, влияющие преимущественно на бактерии.

В чем же главное отличие антибактериальной терапии от других видов медикаментозного лечения, и почему мы выделяем ее в отдельную тему? Отличие заключается в том, что антибактериальная терапия – это лечение, направленное на устранение причины заболевания (этиотропная терапия). В отличие от патогенетической, борющейся с развитием болезни, этиотропная терапия направлена на уничтожение возбудителя, вызвавшего конкретное заболевание.