Название некоторых кислот и их солей. Названия важнейших кислот и их солей. Порядок выполнения работы

Формулы кислот Названия кислот Названия соответствующих солей
HClO 4 хлорная перхлораты
HClO 3 хлорноватая хлораты
HClO 2 хлористая хлориты
HClO хлорноватистая гипохлориты
H 5 IO 6 иодная периодаты
HIO 3 иодноватая иодаты
H 2 SO 4 серная сульфаты
H 2 SO 3 сернистая сульфиты
H 2 S 2 O 3 тиосерная тиосульфаты
H 2 S 4 O 6 тетратионовая тетратионаты
HNO 3 азотная нитраты
HNO 2 азотистая нитриты
H 3 PO 4 ортофосфорная ортофосфаты
HPO 3 метафосфорная метафосфаты
H 3 PO 3 фосфористая фосфиты
H 3 PO 2 фосфорноватистая гипофосфиты
H 2 CO 3 угольная карбонаты
H 2 SiO 3 кремниевая силикаты
HMnO 4 марганцовая перманганаты
H 2 MnO 4 марганцовистая манганаты
H 2 CrO 4 хромовая хроматы
H 2 Cr 2 O 7 дихромовая дихроматы
HF фтороводородная (плавиковая) фториды
HCl хлороводородная (соляная) хлориды
HBr бромоводородная бромиды
HI иодоводородная иодиды
H 2 S сероводородная сульфиды
HCN циановодородная цианиды
HOCN циановая цианаты

Напомню кратко на конкретных примерах, как следует правильно называть соли.


Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.

Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.

Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!

Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.

Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.

В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.

Если вас интересует не только номенклатура солей, но и методы их получения и химические свойства, рекомендую обратиться к соответствующим разделам справочника по химии: "

Названия

Метаалюминиевая

Метаалюминат

Метамышьяковая

Метаарсенат

Ортомышьяковая

Ортоарсенат

Метамышьяковистая

Метаарсенит

Ортомышьяковистая

Ортоарсенит

Метаборная

Метаборат

Ортоборная

Ортоборат

Четырехборная

Тетраборат

Бромоводород

Бромноватистая

Гипобромит

Бромноватая

Муравьиная

Уксусная

Циановодород

Угольная

Карбонат

Щавелевая

Хлороводород

Хлорноватистая

Гипохлорит

Хлористая

Хлорноватая

Перхлорат

Метахромистая

Метахромит

Хромовая

Двухромовая

Дихромат

Иодоводород

Иодноватистая

Гипоиодит

Иодноватая

Периодат

Марганцовая

Перманганат

Марганцовистая

Манганат

Молибденовая

Молибдат

Азидоводород (азотистоводородная)

Азотистая

Метафосфорная

Метафосфат

Ортофосфорная

Ортофосфат

Двуфосфорная(пирофосфорная)

Дифосфат (пирофосфат)

Фосфористая

Фосфорноватистая

Гипофосфит

Сероводород

Родановодород

Сернистая

Тиосерная

Тиосульфат

Двусерная (пиросерная)

Дисульфат (пиросульфат)

Пероксодвусерная (надсерная)

Пероксодисульфат (персульфат)

Селеноводород

Селенистая

Селеновая

Кремниевая

Ванадиевая

Вольфрамовая

вольфрамат

Соли вещества, которые можно рассматривать как продукт замещения атомов водорода в кислоте атомами металлов или группой атомов.Различают 5 типов солей: средние (нормальные), кислые, основные, двойные, комплексные, отличающиеся характером образующихся при диссоциации ионов.

1.Средние соли являются продуктами полного замещения атомов водорода в молекуле кислоты. Состав соли: катион – ион металла, анион – ион кислотного остатка.Nа 2 СО 3 - карбонат натрия

Na 3 РО 4 - фосфат натрия

Nа 3 РО 4 = 3Nа + + РО 4 3-

катион анион

2.Кислые соли – продукты неполного замещения атомов водорода в молекуле кислоты. В состав аниона входят атомы водорода.

NаН 2 РО 4 =Nа + + Н 2 РО 4 -

Дигидрофосфат катион анион

Кислые соли дают только многоосновные кислоты, при недостаточном количестве взятого основания.

Н 2 SO 4 +NaOH=NaHSO 4 +H 2 O

гидросульфат

При добавлении избытка щелочи кислая соль может быть переведена в среднюю

NaHSO 4 +NaOH=Na 2 SO 4 +H 2 O

3.Основные соли – продукты неполного замещения гидроксид-ионов в основании на кислотный остаток. В состав катиона входит гидроксогруппа.

CuOHCl=CuOH + +Cl -

гидроксохлорид катион анион

Основные соли могут быть образованы только многокислотными основаниями

(основаниями, содержащими несколько гидроксильных групп), при взаимодействии их с кислотами.

Cu(OH) 2 +HCl=CuOHCl+H 2 O

Перевести основную соль в среднюю можно, действуя на нее кислотой:

CuOHCl+HCl=CuCl 2 +H 2 O

4.Двойные соли – в их состав входят катионы нескольких металлов и анионы одной кислоты

KAl(SO 4) 2 = K + + Al 3+ + 2SO 4 2-

сульфат калия-алюминия

Характерными свойствами всех рассмотренных типов солей являются: реакции обмена с кислотами, щелочами и друг с другом.

Для наименования солей пользуются русской и международной номенклатурой.

Русское наименование соли составляется из названия кислоты и названия металла: СаСО 3 – углекислый кальций.

Для кислых солей вводится добавка «кислый»: Са(НСО 3) 2 – кислый углекислый кальций. Для названия основных солей добавка «основная»: (СuOH) 2 SO 4 – основная сернокислая медь.

Наибольшее распространение получила международная номенклатура. Название соли по этой номенклатуре состоит из названия аниона и названия катиона: KNO 3 – нитрат калия. Если металл имеет разную валентность в соединении, то ее указывают в скобках:FeSO 4 –сульфат железа (Ш).

Для солей кислородосодержащих кислот в названии вводят суффикс «ат», если кислотообразующий элемент проявляет высшую валентность: KNO 3 – нитрат калия; суффикс «ит», если кислотообразующий элемент проявляет низшую валентность:KNO 2 – нитрит калия. В тех случаях, когда кислотообразующий элемент образует кислоты более чем в двух валентных состояниях, всегда применяют суффикс «ат». При этом если он проявляет высшую валентность, добавляют префикс «пер». Например:KClO 4 – перхлорат калия. Если кислотообразующий элемент образует низшую валентность, применяют суффикс «ит», с добавлением префикса «гипо». Например:KClO– гипохлорит калия. Для солей, образованных кислотами, содержащими разное количество воды, добавляются префиксы «мета» и «орто». Например:NaPO 3 – метафосфат натрия (соль метафосфорной кислоты),Na 3 PO 4 – ортофосфат натрия (соль ортофосфорной кислоты). В названии кислой соли вводят приставку «гидро». Например:Na 2 HPO 4 – гидрофосфат натрия (если в анионе один атом водорода) и приставку «гидро» с греческим числительным (если атомов водорода больше одного) –NaH 2 PO 4 – дигидрофосфат натрия. В названия основных солей вводится приставка «гидроксо». Например:FeOHCl– хлорид гидроксожелеза (П).

5.Комплексные соли – соединения, образующие при диссоциации комплексные ионы (заряженные комплексы). При записи комплексные ионы принято заключать в квадратные скобки. Например:

Ag(NH 3) 2  Cl = Ag(NH 3) 2  + + Cl -

K 2 PtCl 6  = 2K + + PtCl 6  2-

Cогласно представлениям, предложенным А.Вернером, в комплексном соединении различают внутреннюю и внешнюю сферы. Так, например, в рассмотренных комплексных соединениях внутреннюю сферу составляют комплексные ионыAg(NH 3) 2  + иPtCl 6  2- , а внешнюю сферу соответственноCl - и К + . Центральный атом или ион внутренней сферы называется комплексообразователем. В предложенных соединениях этоAg +1 иPt +4 . Координированные вокруг комплексообразователя молекулы или ионы противоположного знака – лиганды. В рассматриваемых соединениях это 2NH 3 0 и 6Cl - . Число лигандов комплексного иона определяет его координационное число. В предложенных соединениях оно соответственно равно 2 и 6.

По знаку электрического заряда различают комплексы

1.Катионные (координация вокруг положительного иона нейтральных молекул):

Zn +2 (NH 3 0) 4 Cl 2 -1 ; Al +3 (H 2 O 0) 6  Cl 3 -1

2.Анионные (координация вокруг комплексообразователя в положительной степени окисления лиганд, имеющих отрицательную степень окисления):

K 2 +1 Be +2 F 4 -1 ; К 3 +1 Fe +3 (CN -1) 6 

3.Нейтральные комплексы – комплексные соединения без внешней сферыPt + (NH 3 0) 2 Cl 2 -  0 . В отличие от соединений с анионными и катионными комплексами, нейтральные комплексы не являются электролитами.

Диссоциация комплексных соединений на внутреннюю и внешнюю сферы называетсяпервичной . Протекает она почти нацело по типу сильных электролитов.

Zn (NH 3) 4 Cl 2 → Zn (NH 3) 4  +2 + 2Cl ─

К 3 Fe(CN) 6 → 3 К + +Fe(CN) 6  3 ─

Комплексный ион (заряженный комплекс) в комплексном соединении образует внутреннюю координационную сферу, остальные ионы составляют внешнюю сферу.

В комплексном соединении K 3 комплексный ион 3- , состоящий из комплексообразователя – ионаFe 3+ и лигандов – ионовCN ─ , является внутренней сферой соединения, а ионы К + образуют внешнюю сферу.

Лиганды, находящиеся во внутренней сфере комплекса связаны комплексообразователем значительно прочнее и их отщепление при диссоциации проходит лишь в незначительной степени. Обратимая диссоциация внутренней сферы комплексного соединения носит название вторичной .

Fe(CN) 6  3 ─ Fe 3+ + 6CN ─

Вторичная диссоциация комплекса протекает по типу слабых электролитов. Алгебраическая сумма зарядов частиц, образующихся при диссоциации комплексного иона, равна заряду комплекса.

Названия комплексных соединений, так же как и названия обычных веществ, образуются из русских названий катионов и латинских названий анионов; так же как и в обычных веществах, в комплексных соединениях первым называется анион. Если анион является комплексным, его название образуется из названия лигандов с окончанием “о” (Сl - - хлоро, ОН - - гидроксо и т.п.) и латинского названия комплексообразователя с суффиксом “ат”; число лигандов как обычно указывается соответствующим числительным. Если комплексообразователь является элементом, способным проявлять переменную степень окисления, численное значение степени окисления, как и в названиях обычных соединений, указывается римской цифрой в круглых скобках

Пример:Названия комплексных соединений с комплексным анионом.

K 3 – гексацианоферрат (III) калия

Комплексные катионы в подавляющем большинстве случаев в качестве лигандов содержат нейтральные молекулы воды Н 2 О, называемые “аква”, или аммиакаNH 3 , называемые “аммин”. В первом случае комплексные катионы называются аквакомплексами, во втором – аммиакатами. Название комплексного катиона состоит из названия лигандов с указанием их количества и русского названия комплексообразователя с обозначенным значением его степени окисления, если это необходимо.

Пример: Названия комплексных соединений с комплексным катионом.

Cl 2 – хлорид тетрамминцинка

Комплексы, несмотря на их устойчивость, могут разрушаться в реакциях, при которых происходит связывание лигандов в ещё более устойчивые слабодиссоциирущие соединения.

Пример: Разрушение гидроксокомплекса кислотой вследствие образования слабодиссоциируюших молекул Н 2 О.

K 2 + 2H 2 SO 4 = K 2 SO 4 + ZnSO 4 + 2H 2 O.

Название комплексного соединения начинают с указания состава внутренней сферы, потом называют центральный атом и степень его окисления.

Во внутренней сфере сначала называют анионы, прибавляя к латинскому названию окончание «о».

F -1 – фторо Сl - - хлороCN - - цианоSO 2 -2 –сульфито

ОН - - гидроксоNO 2 - - нитрито и т.д.

Затем называют нейтральные лиганды:

NH 3 – аммин Н 2 О – аква

Число лигандов отмечают греческими числительными:

I– моно (как правило не указывается), 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 –гекса. Далее переходят к названию центральатома (комплексообразователя). При этом учитывают следующее:

Если комплексообразователь входит в состав катиона, то используют русское название элемента и в скобках указывают римскими цифрами степень его окисления;

Если комплексообразователь входит в состав аниона, то употребляют латинское название элемента, перед ним указывают степень его окисления, а в конце прибавляют окончание – «ат».

После обозначения внутренней сферы указывают катионы или анионы, находящиеся во внешней сфере.

При образовании названия комплексного соединения надо помнить, что лиганды, входящие в его состав могут быть смешанными: электронейтральные молекулы и заряженные ионы; или заряженные ионы разных видов.

Ag +1 NH 3  2 Cl– хлорид диамин-серебра (I)

K 3 Fe +3 CN 6 - гексациано (Ш) феррат калия

NH 4  2 Pt +4 OH 2 Cl 4 – дигидроксотетрахлоро (IV) платинат аммония

Pt +2 NH 3  2 Cl 2 -1  о - диамминодихлорид-платина х)

Х) в нейтральных комплексах название комплексообразователя даётся в именительном падеже

Формула кислоты Название кислоты Название соли Соответствующий оксид
HCl Соляная Хлориды ----
HI Йодоводородная Иодиды ----
HBr Бромоводородная Бромиды ----
HF Плавиковая Фториды ----
HNO 3 Азотная Нитраты N 2 O 5
H 2 SO 4 Серная Сульфаты SO 3
H 2 SO 3 Сернистая Сульфиты SO 2
H 2 S Сероводородная Сульфиды ----
H 2 CO 3 Угольная Карбонаты CO 2
H 2 SiO 3 Кремниевая Силикаты SiO 2
HNO 2 Азотистая Нитриты N 2 O 3
H 3 PO 4 Фосфорная Фосфаты P 2 O 5
H 3 PO 3 Фосфористая Фосфиты P 2 O 3
H 2 CrO 4 Хромовая Хроматы CrO 3
H 2 Cr 2 O 7 Двухромовая Бихроматы CrO 3
HMnO 4 Марганцовая Перманганаты Mn 2 O 7
HClO 4 Хлорная Перхлораты Cl 2 O 7

Кислоты в лаборатории можно получить:

1) при растворении кислотных оксидов в воде:

N 2 O 5 + H 2 O → 2HNO 3 ;

CrO 3 + H 2 O → H 2 CrO 4 ;

2) при взаимодействии солей с сильными кислотами:

Na 2 SiO 3 + 2HCl → H 2 SiO 3 ¯ + 2NaCl;

Pb(NO 3) 2 + 2HCl → PbCl 2 ¯ + 2HNO 3 .

Кислоты взаимодействуют с металлами, основаниями, основными и амфотерными оксидами, амфотерными гидроксидами и солями:

Zn + 2HCl → ZnCl 2 + H 2 ­;

Cu + 4HNO 3 (концентр.) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

H 2 SO 4 + Ca(OH) 2 → CaSO 4 ¯ + 2H 2 O;

2HBr + MgO → MgBr 2 + H 2 O;

6HI + Al 2 O 3 → 2AlBr 3 + 3H 2 O;

H 2 SO 4 + Zn(OH) 2 → ZnSO 4 + 2H 2 O;

AgNO 3 + HCl → AgCl¯ + HNO 3 .

Обычно кислоты взаимодействуют только с теми металлами, которые в электрохимическом ряду напряжения стоят до водорода, при этом выделяется свободный водород. С малоактивными металлами (в электрохимическом ряду напряжения стоят после водорода) такие кислоты не взаимодействуют. Кислоты, являющиеся сильными окислителями (азотная, концентрированная серная), реагируют со всеми металлами, за исключением благородных (золото, платина), но при этом выделяется не водород, а вода и оксид, например, SO 2 или NO 2 .

Солью называют продукт замещения водорода в кислоте на металл.

Все соли делятся на:

средние – NaCl, K 2 CO 3 , KMnO 4 , Ca 3 (PO 4) 2 и др.;

кислые – NaHCO 3 , KH 2 PO 4 ;

основные – CuOHCl, Fe(OH) 2 NO 3 .

Средней солью называется продукт полного замещения ионов водорода в молекуле кислоты атомами металла.

Кислые соли содержат атомы водорода, способные участвовать в химических обменных реакциях. В кислых солях произошло неполное замещение атомов водорода атомами металла.

Основные соли – это продукт неполного замещения гидроксо-групп оснований многовалентных металлов кислотными остатками. Основные соли всегда содержат гидроксогруппу.

Средние соли получают взаимодействием:

1) кислоты и основания:

NaOH + HCl → NaCl + H 2 O;

2) кислоты и основного оксида:



H 2 SO 4 + CaO → CaSO 4 ¯ + H 2 O;

3) кислотного оксида и основания:

SO 2 + 2KOH → K 2 SO 3 + H 2 O;

4) кислотного и основного оксидов:

MgO + CO 2 → MgCO 3 ;

5) металла с кислотой:

Fe + 6HNO 3 (концентр.) → Fe(NO 3) 3 + 3NO 2 + 3H 2 O;

6) двух солей:

AgNO 3 + KCl → AgCl¯ + KNO 3 ;

7) соли и кислоты:

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ¯;

8) соли и щелочи:

CuSO 4 + 2CsOH → Cu(OH) 2 ¯ + Cs 2 SO 4 .

Кислые соли получают:

1) при нейтрализации многоосновных кислот щелочью в избытке кислоты:

H 3 PO 4 + NaOH → NaH 2 PO 4 + H 2 O;

2) при взаимодействии средних солей с кислотами:

СaCO 3 + H 2 CO 3 → Ca(HCO 3) 2 ;

3) при гидролизе солей, образованных слабой кислотой:

Na 2 S + H 2 O → NaHS + NaOH.

Основные соли получают:

1) при реакции между основанием многовалентного металла и кислотой в избытке основания:

Cu(OH) 2 + HCl → CuOHCl + H 2 O;

2) при взаимодействии средних солей со щелочами:

СuCl 2 + KOH → CuOHCl + KCl;

3) при гидролизе средних солей, образованных слабыми основаниями:

AlCl 3 +H 2 O → AlOHCl 2 + HCl.

Соли могут взаимодействовать с кислотами, щелочами, другими солями, с водой (реакция гидролиза):

2H 3 PO 4 + 3Ca(NO 3) 2 → Ca 3 (PO 4) 2 ¯ + 6HNO 3 ;

FeCl 3 + 3NaOH → Fe(OH) 3 ¯ + 3NaCl;

Na 2 S + NiCl 2 → NiS¯ + 2NaCl.

В любом случае реакция ионного обмена идет до конца только тогда, когда образуется малорастворимое, газообразное или слабо диссоциирующее соединение.

Кроме того, соли могут взаимодействовать с металлами при условии, что металл более активный (имеет более отрицательный электродный потенциал), чем металл, входящий в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu.

Для солей также характерны реакции разложения:

BaCO 3 → BaO + CO 2 ­;

2KClO 3 → 2KCl + 3O 2 ­.

Лабораторная работа №1

ПОЛУЧЕНИЕ И СВОЙСТВА

ОСНОВАНИЙ, КИСЛОТ И СОЛЕЙ

Опыт 1. Получение щелочей.

1.1. Взаимодействие металла с водой.

В кристаллизатор или фарфоровую чашечку налейте дистиллированной воды (примерно 1/2 сосуда). Получите у преподавателя кусочек металлического натрия, предварительно подсушенного фильтровальной бумагой. Бросьте кусочек натрия в кристаллизатор с водой. По окончании реакции добавьте несколько капель фенолфталеина. Отметьте наблюдаемые явления, составьте уравнение реакции. Назовите полученное соединение, запишите его структурную формулу.



1.2. Взаимодействие оксида металла с водой.

В пробирку налейте дистиллированной воды (1/3 пробирки) и поместите в нее комочек CaO, тщательно перемешайте, добавьте 1 – 2 капли фенолфталеина. Отметьте наблюдаемые явления, напишите уравнение реакции. Назовите полученное соединение, дайте его структурную формулу.

Называются вещества, диссоциирующие в растворах с образованием ионов водорода.

Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.

По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .

По наличию кислорода различают кислородсодержащие кислоты ( HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты ( HCl , H 2 S , HCN и т.п.).

По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.

Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.

Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» ( HClO 3 - хлорноватая кислота), «истая» ( HClO 2 - хлористая кислота), «оватистая» ( H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» ( HNO 3 - азотная кислота, HNO 2 - азотистая кислота).

Таблица - Важнейшие кислоты и их соли

Кислота

Названия соответствующих нормальных солей

Название

Формула

Азотная

HNO 3

Нитраты

Азотистая

HNO 2

Нитриты

Борная (ортоборная)

H 3 BO 3

Бораты (ортобораты)

Бромоводородная

Бромиды

Иодоводородная

Иодиды

Кремниевая

H 2 SiO 3

Силикаты

Марганцовая

HMnO 4

Перманганаты

Метафосфорная

HPO 3

Метафосфаты

Мышьяковая

H 3 AsO 4

Арсенаты

Мышьяковистая

H 3 AsO 3

Арсениты

Ортофосфорная

H 3 PO 4

Ортофосфаты (фосфаты)

Дифосфорная (пирофосфорная)

H 4 P 2 O 7

Дифосфаты (пирофосфаты)

Дихромовая

H 2 Cr 2 O 7

Дихроматы

Серная

H 2 SO 4

Сульфаты

Сернистая

H 2 SO 3

Сульфиты

Угольная

H 2 CO 3

Карбонаты

Фосфористая

H 3 PO 3

Фосфиты

Фтороводородная (плавиковая)

Фториды

Хлороводородная (соляная)

Хлориды

Хлорная

HClO 4

Перхлораты

Хлорноватая

HClO 3

Хлораты

Хлорноватистая

HClO

Гипохлориты

Хромовая

H 2 CrO 4

Хроматы

Циановодородная (синильная)

Цианиды

Получение кислот

1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:

H 2 + Cl 2 → 2HCl,

H 2 + S H 2 S.

2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:

SO 3 + H 2 O = H 2 SO 4 ,

CO 2 + H 2 O = H 2 CO 3 ,

P 2 O 5 + H 2 O = 2 HPO 3 .

3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,

CuSO 4 + H 2 S = H 2 SO 4 + CuS,

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.

4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

H 2 O 2 + SO 2 = H 2 SO 4 ,

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .

Химические свойства кислот

1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,

2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,

2 HCl + ZnO = ZnCl 2 + H 2 O .

2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:

Zn + 2HCl = ZnCl 2 + H 2 ,

2Al + 6HCl = 2AlCl 3 + 3H 2 .

3. С солями, если образуется малорастворимая соль или летучее вещество:

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,

2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):

Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,

NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.

4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.

5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):

H 2 SO 4 = H 2 O + SO 3 ,

H 2 SiO 3 = H 2 O + SiO 2 .

М.В. Андрюxoва, Л.Н. Бopoдина


Кислота Кислотный остаток
Формула Название Формула Название
HBr бромоводородная Br – бромид
HBrO 3 бромноватая BrO 3 – бромат
HCN циановодородная (синильная) CN – цианид
HCl хлороводородная (соляная) Cl – хлорид
HClO хлорноватистая ClO – гипохлорит
HClO 2 хлористая ClO 2 – хлорит
HClO 3 хлорноватая ClO 3 – хлорат
HClO 4 хлорная ClO 4 – перхлорат
H 2 CO 3 угольная HCO 3 – гидрокарбонат
CO 3 2– карбонат
H 2 C 2 O 4 щавелевая C 2 O 4 2– оксалат
CH 3 COOH уксусная CH 3 COO – ацетат
H 2 CrO 4 хромовая CrO 4 2– хромат
H 2 Cr 2 O 7 дихромовая Cr 2 O 7 2– дихромат
HF фтороводородная (плавиковая) F – фторид
HI иодоводородная I – иодид
HIO 3 иодноватая IO 3 – иодат
H 2 MnO 4 марганцовистая MnO 4 2– манганат
HMnO 4 марганцовая MnO 4 – перманганат
HNO 2 азотистая NO 2 – нитрит
HNO 3 азотная NO 3 – нитрат
H 3 PO 3 фосфористая PO 3 3– фосфит
H 3 PO 4 фосфорная PO 4 3– фосфат
HSCN тиоциановодородная (роданистая) SCN – тиоцианат (роданид)
H 2 S сероводородная S 2– сульфид
H 2 SO 3 сернистая SO 3 2– сульфит
H 2 SO 4 серная SO 4 2– сульфат

Окончание прил.

Приставки, наиболее часто употребляемые в названиях

Интерполяция справочных величин

Иногда необходимо узнать величину плотности или концентрации, не указанную в справочных таблицах. Искомый параметр можно найти методом интерполяции.



Пример

Для приготовления раствора HCl была взята имеющаяся в лаборатории кислота, плотность которой была определена ареометром. Она оказалась равной 1,082 г/см 3 .

По таблице справочника находим, что кислота плотностью 1,080 имеет массовую долю 16,74 %, а с 1,085 - 17,45 %. Чтобы найти массовую долю кислоты в имеющемся растворе, воспользуемся формулой для интерполяции:

%,

где индекс 1 относится к более разбавленному раствору, а 2 - к более концентрированному.


Предисловие……………………………..………….……….…......3

1. Основные понятия титриметрических методов анализа……...7

2. Методы и способы титрования……………………….....……...9

3. Вычисление молярной массы эквивалентов.…………………16

4. Способы выражения количественного состава растворов

в титриметрии……………………………………………………..21

4.1. Решение типовых задач на способы выражения

количественного состава растворов……………….……25

4.1.1. Расчет концентрации раствора по известным массе и объему раствора………………………………………..26

4.1.1.1. Задачи для самостоятельного решения...29

4.1.2. Пересчет одной концентрации в другую………...30

4.1.2.1. Задачи для самостоятельного решения...34

5. Способы приготовления растворов…………………………...36

5.1. Решение типовых задач на приготовление растворов

различными способами…………………………………..39

5.2. Задачи для самостоятельного решения………………….48

6. Расчет результатов титриметрического анализа………..........51

6.1. Расчет результатов прямого и заместительного

титрования………………………………………………...51

6.2. Расчет результатов обратного титрования……………...56

7. Метод нейтрализации (кислотно-основное титрование)……59

7.1. Примеры решения типовых задач…...…………………..68

7.1.1. Прямое и заместительное титрование……………68

7.1.1.1. Задачи для самостоятельного решения…73

7.1.2. Обратное титрование……………………………..76

7.1.2.1. Задачи для самостоятельного решения…77

8. Метод окисления-восстановления (редоксиметрия)………...80

8.1. Задачи для самостоятельного решения………………….89

8.1.1. Окислительно-восстановительные реакции……..89

8.1.2. Расчет результатов титрования…………………...90

8.1.2.1. Заместительное титрование……………...90

8.1.2.2. Прямое и обратное титрование…………..92

9. Метод комплексообразования; комплексонометрия…...........94

9.1. Примеры решения типовых задач……………………...102

9.2. Задачи для самостоятельного решения………………...104

10. Метод осаждения………………………………………........106

10.1. Примеры решения типовых задач…………………….110

10.2. Задачи для самостоятельного решения……………….114

11. Индивидуальные задания по титриметрическим

методам анализа…………………………………………………117

11.1. План выполнения индивидуального задания………...117

11.2. Варианты индивидуальных заданий………………….123

Ответы к задачам ………..………………………………………124

Условные обозначения……………………………………….…127

Приложение……………………………………………………...128

УЧЕБНОЕ ИЗДАНИЕ

АНАЛИТИЧЕСКАЯ ХИМИЯ