Нетрадиционные моторы на постоянных магнитах. Большая энциклопедия нефти и газа

Проблема изобретения вечного двигателя начала волновать конструкторов и механиков довольно давно. Наличие такого устройства в масштабных размерах могло бы очень сильно изменить жизнь во всех ее проявлениях и ускорить развитие большинства областей науки и промышленности.

Из истории изобретения магнитного двигателя

История первого появления магнитного двигателя начинается в 1969 году. Именно в этом году бал изобретен и сконструирован первый прототип этого механизма, который состоял из деревянного корпуса и нескольких магнитов.

Сила этих магнитов была настолько слаба, что ее энергии хватало лишь на вращение ротора. Этот магнитный двигатель своими руками создал конструктор Майкл Брэди. Большую часть своей жизни изобретатель посвятил конструированию двигателей. И в 90-х годах прошлого столетия он создал абсолютно новую модель, на которую и получил патент.

Первые шаги

Взяв за основу магнитный двигатель, своими руками и с участием помощника Брэди сконструировал электрогенератор, который имел небольшую мощность в 6 кВт. Источником энергии являлся силовой мотор, который работал исключительно на постоянных магнитах.

Но в этой модели был свой недостаток - обороты и мощность двигателя оставались неизменно постоянными.

Эта возникшая трудность подтолкнула ученых к созданию модели устройства, в котором можно было изменять силу момента вращения и скорость вращения ротора. Для этого понадобилось наряду с постоянными магнитами добавить в конструкцию магнитные катушки для усиления магнитного поля.

Так возможно ли сейчас, когда наука шагнула далеко вперед, и нас окружает большое количество уникальных по своей природе вещей, сконструировать двигатель на постоянных магнитах своими руками? Такой двигатель можно сконструировать, но КПД его будет довольно низким, а само изобретение будет выглядеть, скорее, как демонстрационная модель, нежели серьезный агрегат.

Что понадобится?

Для создания упрощенного прототипа магнитного двигателя понадобятся неодимовые магниты, пластиковый или другой диэлектрический обод, вал с наименьшим сопротивлением вращению, некоторые инструменты и прочие мелочи, которые всегда могут быть под рукой.

Процесс сборки

Начинать собирать магнитный двигатель своими руками следует с прочного закрепления неодимовых магнитов по всей окружности имеющегося обода. Магниты должны быть плоские и иметь максимальную площадь. Закрепить магниты можно при помощи клея, располагаться они должны максимально плотно друг к другу, чтобы создать непрерывное единое магнитное поле. Причем все магниты должны быть обращены наружу одинаковым полюсом.

Обод с прочно зафиксированными на нем магнитами стоит закрепить на горизонтальной плоскости, например, на листе фанеры или доске. В центре данной конструкции нужно расположить вращающийся вал, высотой немного больше, чем высота обода.

От верхней части вала должна отходить планка или трубка из непроводникового материала, длиной немного больше радиуса обода, на котором также будет зафиксирован магнит параллельно магнитному кольцу. Причем это магнит должен располагаться таким же полюсом к остальным магнитам, что и закрепленные на ободе.

Таким образом, придав небольшое ускорение магниту, располагающемуся на валу, можно наблюдать его вращение вокруг оси. При этом вращение будет постоянным, если вокруг обода образованно непрерывное магнитное поле. Такое вращение достигается путем взаимодействия одинаковых по знаку магнитных полей, а именно их отталкивания. Магнитное поле, созданное вокруг обода, является более сильным и старается вытолкнуть одиночный магнит за свои пределы, что и вызывает его вращение.

Даже если использовать более сильные магниты, то потенциал данного устройства будет очень малым и никакой практической функции нести не может. Если же попытаться воссоздать его в крупном масштабе, то создаваемое магнитное поле будет настолько мощным, что находиться в зоне его действия человеку будет очень опасно. Помимо этого, силы огромных магнитов может быть достаточно, чтобы возникли неразрешимые проблемы при их транспортировке, связанные с притяжением техники, рельс и прочих металлических предметов.

В будущее с вечным двигателем

Возможность изобретения вечного двигателя неоднократно опровергалась на протяжении многих десятков лет многими физиками, конструкторами и другими учеными. Невозможность его создания доказывалась теоретически и стимулировала возникновение различных законов и постулатов.

Надежда всегда остается, ведь в мире существует огромное количество необъяснимых явлений, секрет которых может послужить новым толчком в развитии науки. Ведь имея возможность сконструировать вечный двигатель и рационально его использовать, можно забыть раз и навсегда о большом количестве проблем, которые поглощают цивилизации в глобальных масштабах.

Можно раз и навсегда позабыть о проблеме добычи топливных ресурсов и, как следствие, об экологической проблеме, возникающей в результате их использования. Создание вечного магнитного двигателя позволит сохранить леса, водные ресурсы и больше никогда не возвращаться к вопросам, связанным с энергетической нестабильностью. Имена изобретателей этого шедевра могут вознестись на пик известности и почитания и быть вписанными в историю на многие века. Ведь эти люди будут достойны наивысших богатств, наград и почестей за свои достижения.

Сегодня для вас очередной эксперимент, который, надеемся, заставит вас задуматься. Это динамическая левитация в магнитном поле. В этом случае один кольцевой магнит располагается над таким-же, но большим по размеру. Продаются магниты дешевле в этом китайском магазине .

Это типичный левитрон, который уже был ранее показан (материал ). Большой магнит и маленький. Они направлены друг к другу одноименными полюсами, соответственно отталкиваются, за счет этого и происходит левитация. Присутствует, естественно, магнитная впадина, или потенциальная яма, в которую верхний магнитик садится. Другой момент, это то, что он вращается за счет гироскопического момента, он какое-то время не переворачивается, пока у него скорость не снизится.

В чем замысел эксперимента?

Если мы вращаем волчок только для того, чтобы он не перевернулся, возникает вопрос. А зачем? Если можно взять какую-то спицу, например, деревянную. К ней жестко прикрепить верхний магнитик, а снизу повесить грузчик расположить эту конструкцию над вторым. Таким образом он тоже по идее должен висеть, а нижний грузик не будет давать ему переворачиваться.

Нужно будет очень точно выставить баланс массы этого волчка. Получилось бы магнитная левитация без затрат энергии.

Как это устроено?

Вот кольцевой магнит, в него жестко вставлена деревянная спица. Далее пластинка из пластика с отверстием для стабилизации спицы. И на конце – грузик. Кусочек пластилина для более удобной регулировки подбора массы. Можно откусывать по чуть-чуть и подобрать такую массу всей этой конструкции, чтобы маленький кольцевой магнитик попадал четко в зону левитации.

Давайте его аккуратно поместим внутрь нижнего магнита, он как бы зависает. Кусочком оргстекла можно попытаться стабилизировать его положение. Но вот стабилизации по горизонтали это ему почему-то не придает.

Если убрать пластинку и вернуть все обратно, то магнитик вместе с осью, на которой он покоится, будет сваливаться вбок. Когда он вращается, он почему-то в магнитной яме стабилизируется. Хотя, обратите внимание, при этом вращении он двигается со стороны в сторону, наверное, миллиметров на пять. Точно также он колеблется и в вертикальном положении сверху вниз. Создается такое впечатление, что это магнитная яма имеет определенный люфт. Стоит верхнему магниту попасть в яму, оне его захватывает и удерживает. Остается лишь гироскопическим моментом добиться того, чтобы этот магнит не переворачивался.

В чем была суть эксперимента?

Проверить, если мы сделаем показанную конструкцию с осью, она фактически она выполняет тоже самое, не давая магниту перевернуться. Она выводит его в зону потенциальной ямы, мы подбираем вес этой конструкции. Магнитик находится в яме, но, попадая в нее, почему-то не стабилизируется по горизонтали. Все равно это конструкция сваливается в сторону.

Проведя этот эксперимент, возникает главный вопрос: почему же такая несправедливость, когда этот магнит как волчок вращается, он зависает в потенциальной яме, все отлично стабилизируется и захватывается; а когда создаются те же условия, все тоже самое, то есть масса и высота, яма как будто пропадает. Он просто выталкивается.

Почему нет стабилизации верхнего магнита?

Предположительно, это происходит потому, что невозможно сделать магниты идеальными. Как по форме, так и по намагниченности. Поле имеет какие-то изьяны, перекосы и поэтому в нем не могут два наших магнита найти равновесное состояние. Они обязательно будут соскальзывать, поскольку между ними нет трения. А при вращении левитрона поля как бы сглаживаются, верхняя часть конструкции не успевает при вращении сойти в сторону.

Это понятно, но что мотивировало автора видео сделать этот эксперимент, это наличие потенциальной ямы. Была надежда, что у этой ямы есть какой-то запас прочности для удержания конструкции. Но, увы, этого почему-то не произошло. Хотелось бы почитать ваше мнение об этой загадке.

Есть еще материал на эту тему.

Жорже Гуала-Валверде (Jorge Guala-Valverde), Педро Маззони (Pedro Mazzoni)

Униполярный мотор-генератор

ВВЕДЕНИЕ

Продолжая наши исследования двигательной электромагнитной индукции, начатые нами ранее , мы решили выявить наличие крутящего момента в «замкнутом магнитном поле» в униполярных моторах-генераторах. Сохранение кинетического момента исключает частное взаимодействие между создающим поле магнитом и проводом, по которому течет напряжение, как это наблюдается в ранее изученных конфигурациях «открытого магнитного поля». Баланс кинетического момента теперь наблюдается между активным током и магнитом, а также его ярмом целиком.

Электродвижущая сила, вызываемая вращающимися магнитами

На рисунке отображено свободное вращение по часовой стрелке магнита, северный полюс которого проходит под двумя проводами: пробником и контактным проводом, находящимися в покое в лабораторных условиях. В обоих вышеуказанных проводах электроны движутся центростремительно. Каждый провод становится источником электродвижущей силы (ЭДС). В случае если концы проводов соединены, цепь представляет собой два идентичных источника электродвижущей силы, соединенных в противофазе, что препятствует движению тока. Если закрепить пробник на магните, обеспечив, таким образом, непрерывность течения тока по проводам, то постоянный ток будет течь по всей цепи . Если же пробник находится в состоянии покоя относительно магнита, индукция будет наблюдаться только в контактном проводе, находящемся в движении относительно магнита. Пробник играет пассивную роль, являясь проводником тока .

Вышеизложенное экспериментальное открытие, находясь в полном соответствии с электродинамикой Вебера , ставит точку в вопросе недопонимания принципов двигательной электромагнитной индукции , а также укрепляет позиции сторонников теории «линий вращающегося поля» .

Рис. 1. Униполярный установочный магнит, пробник и контактный провод

Крутящий момент, наблюдаемый в свободно врашаюшихся магнитах

Двигатель, отображенный на Рис. 1, имеет и обратно направленное действие: путем пропускания постоянного тока через соединенные электрически, но механически развязанные провода, мы получаем конфигурацию мотора.

Очевидно, что если пробник припаян к контактному проводу, образуя, таким образом, закрытый контур, компенсация крутящего момента препятствует вращению магнита и контура.

Униполярный мотор замкнутого магнитного поля

В целях изучения свойств униполярных моторов, действующих при замкнутом в железном сердечнике магнитном поле, нами были внесены небольшие изменения в предыдущие эксперименты .

Ярмо поперечно пересекает расположенная коллинеарно с осью магнита левая часть провода-контура, через который протекает постоянный ток. Несмотря на то, что сила Лапласа воздействует на эту часть провода, этого недостаточно для того, чтобы развить крутящий момент. Как верхняя горизонтальная, так и правая вертикальная части провода расположены в области, на которую не оказывает влияние магнитное поле (не принимая во внимание магнитное рассеяние). Нижняя горизонтальная часть провода, далее по тексту именуемая пробником, расположена в зоне наибольшей интенсивности магнитного поля (воздушный зазор). Сам контур не может рассматриваться как состоящий из пробника, присоединенного к контактному проводу.

Согласно постулатам электродинамики, пробник будет являться активной областью создания углового момента в катушке, а само вращение будет иметь место в случае, если сила тока будет достаточной для преодоления момента силы трения.

Описанное выше навело нас на мысль, что для того, чтобы усилить действие данного эффекта, необходимо заменить одинарный контур катушкой, состоящей из п контуров. В описываемой в данный момент конфигурации «активная длина» пробника достигает приблизительно 4 см, N = 20, а магнитное поле на пробнике достигает величины 0,1 Тесла.

Хотя динамическое поведение катушки легко предсказуемо, того же самого нельзя сказать о магните. С точки зрения теории мы не можем ожидать непрерывного вращения магнита, поскольку это подразумевало бы создание углового момента. Вследствие пространственных ограничений, налагаемых конструкцией ярма, катушка не в состоянии совершить полный оборот и, после незначительного углового перемещения, должна столкнуться с находящимся в состоянии покоя ярмом. Непрерывное вращение магнита подразумевает создание несбалансированного углового момента, источник которого трудно определить. Более того, если мы допускаем совпадение кинематического и динамического вращения , мы должны, по всей видимости, ожидать силовое взаимодействие между катушкой, магнитом, а также сердечником как полностью намагниченного массива. Для того чтобы подтвердить данные логические выводы на практике, нами были проведены следующие эксперименты.

ЭКСПЕРИМЕНТ N 1

1-a. Свободное вращение магнита и катушки в лабораторных условиях

Центробежный в нижней части контура постоянный ток, сила которого варьируется от 1 до 20 А, подается на катушку, располагающуюся на северном полюсе магнита. Ожидаемый угловой момент наблюдается, когда сила постоянного тока достигает значения приблизительно в 2 А, что является достаточным условием для преодоления трения опор катушек. Как и ожидалось, вращение меняет свое направление на обратное при подаче в контур центростремительного постоянного тока.

Вращение магнита не наблюдалось ни в одном случае, хотя значение момента силы трения для магнита не превышало 3-10 ~ 3 Н/мΘ

1-b. Магнит с прикрепленной к нему катушкой

Если катушку прикрепить к магниту, как катушка, так и магнит будут совместно вращаться в направлении по часовой стрелке при достижении центробежным постоянным током (в активной части контура) силы, превышающей значение 4 А. Направление движения меняется на обратное при подаче в контур центростремительного постоянного тока. Вследствие компенсации действие-противодействие данный эксперимент исключает частное взаимодействие между магнитом и катушкой. Наблюдаемые свойства вышеописанного двигателя сильно отличается от эквивалентной конфигурации «открытого поля». Опыт указывает нам на то, что взаимодействие будет происходить между системой «магнит + ярмо» как единым целым и активной частью катушки. С целью пролить свет на данный вопрос нами были проведены два независимых друг от друга эксперимента.


Рис. 3. Использовавшаяся
в эксперименте №2 конфигурация
Фото 1. Соответствует Рис. 3

Пробник свободно вращается в воздушном зазоре, тогда как контактный провод остается прикрепленным к опоре. В случае если внутри пробника течет центробежный постоянный ток, сила которого приблизительно равна 4 А, регистрируется вращение пробника по часовой стрелке. Вращение происходит против часовой стрелки в случае, если на пробник подается центростремительный постоянный ток. При повышении силы постоянного тока до уровня в 50 А вращение магнита также не наблюдается.

ЭКСПЕРИМЕНТ N 2

2-а. Механически разъединенные пробник и контактный провод

В качестве пробника нами использовался провод L-образной формы. Пробник и контактный провод электрически соединяются через чашки, наполненные ртутью , однако механически они разъединены (Рис. 3 + фото 1).

2-b. Пробник прикреплен к магниту

В данном случае пробник присоединяется к магниту, при этом оба свободно вращаются в воздушном зазоре. Вращение по часовой стрелке наблюдается в случае, когда сила центробежного постоянного тока достигает значения в 10 А. Вращение меняет направление на противоположное, если подается центростремительный постоянный ток.

Контактный провод, являющийся причиной вращения магнита в эквивалентной конфигурации «открытого поля», теперь располагается в области меньшего воздействия поля, являясь пассивным элементом создания углового момента.

С другой стороны, намагниченное тело (в данном случае - ярмо) не в состоянии вызвать вращение другого намагниченного тела (в данном случае - самого магнита). «Увлечение» магнита пробником представляется наиболее приемлемым объяснением наблюдаемого феномена. Для того чтобы подкрепить последнюю гипотезу дополнительными экспериментальными фактами, заменим имеющий равномерный цилиндрический магнит другим магнитом, у которого отсутствует круговой сектор, составляющий 15º (фото 2). В данной модификации проявляется сингулярность близкого воздействия, которой ограничивается магнитное поле .

2-c. Пробник, свободно вращающийся в области сингулярности магнита.


Как и ожидалось, вследствие изменения полярности поля, при прохождении по пробнику центробежного тока силой около 4A пробник вращается в направлении против часовой стрелки, тогда как магнит вращается в противоположном направлении. Очевидно, что в данном случае имеет место локальное взаимодействие в полном соответствии с третьим законом Ньютона.


2-d. Пробник, прикрепленный к магниту в области сингулярности магнитного поля.


В случае если к магниту прикреплен пробник и по цепи направлен постоянный ток силой достигающей 100A, вращения не наблюдается, несмотря на тот факт, что момент силы трения равен указанному в пункте 2-Ь. Компенсация действие-противодействие сингулярности уничтожает взаимное вращательное взаимодействие между пробником и магнитом. Следовательно, данный эксперимент опровергает гипотезу о скрытом угловом моменте, воздействующем на магнит.

Таким образом, активная часть контура, по которому течет ток, является единственной причиной движения магнита. Экспериментальные результаты, достигнутые нами, показывают, что магнит больше не может являться источником реактивных моментов вращения, как это наблюдается в конфигурации «открытого поля». В конфигурации с «замкнутым полем» магнит играет лишь пассивную электромеханическую роль: он является источником магнитного поля. Взаимодействие сил теперь наблюдается между током и всем намагниченным массивом.

Фото 2. Эксперименты 2-е и 2-d

ЭКСПЕРИМЕНТ N 3

3-а. Симметричная копия эксперимента 1-а

Ярмо весом в 80 кг подвешивалось с помощью двух стальных проводов длиной 4 метра, прикрепленных к потолку. При установке катушки с 20 витками наблюдается поворот ярма на угол в 1 градус при достижении силой постоянного тока (в активной части ярма) значения, равного 50А. Ограниченное вращение наблюдается над линией, с которой совпадает ось вращения магнита. Незначительное проявление данного эффекта легко наблюдается при использовании оптических средств. Вращение меняет свое направление на противоположное при изменении направления постоянного тока.

При присоединении катушки к ярму не наблюдается никакого углового отклонения даже при достижении силой тока значения равного 100А.

Униполярный генератор «замкнутого поля»

Если униполярный мотор-генератор является двигателем, изменяющим направление вращения на обратное , выводы, относящиеся к конфигурации мотора, могут быть применены, с соответствующими изменениями, к конфигурации генератора:

1. Осциллирующая катушка

Пространственно ограниченное вращение катушки генерирует ЭДС, равную NwBR 2 /2, меняющую знак при изменении направления вращения на обратное. Параметры измеряемого на выходе тока не изменяются при присоединении катушки к магниту. Данные качественные измерения производились при помощи катушки с 1000 витками, которая передвигалась вручную. Выходной сигнал усиливался при помощи линейного усилителя. В случае, когда катушка оставалась в состоянии покоя в лаборатории, скорость вращения магнита достигала 5 оборотов в секунду; однако в катушке не регистрировалось наличие электрического сигнала.

2. Разделенный контур

Эксперименты по выработки электрической энергии с пробником, механически отделенным от контактного провода, нами проведены не были. Несмотря на это, и благодаря полной обратимости, продемонстрированной электромеханической конверсией , легко сделать вывод о поведении каждого компонента в реально действующем двигателе. Применим, шаг за шагом, все выводы, сделанные по работе мотора, к генератору:

ЭКСПЕРИМЕНТ 2-А"

При вращении пробника вырабатывается ЭДС, меняющая знак при изменении направления вращения на обратное. Вращение магнита не может вызвать появление ЭДС.

ЭКСПЕРИМЕНТ 2-В"

В случае если пробник прикреплен к магниту и при этом производится его вращение, будет получен результат, эквивалентный описанному в эксперименте №2а. В случае с любыми конфигурациями, использующими «замкнутое поле» вращение магнита не играет сколько-нибудь существенной роли в генерации ЭДС. Вышеприведенные выводы частично подтверждают некоторые ранее сделанные, хотя и ошибочные в отношении конфигурации «открытого поля», заявления, в частности, принадлежащие Пановскому и Фейнману .

ЭКСПЕРИМЕНТЫ 2-С" И 2-D"

Пробник, находящийся в движении относительно магнита, будет являться причиной выработки ЭДС. Появление ЭДС не наблюдается при вращении магнита, к которому в сингулярности его поля прикреплен пробник.

ЗАКЛЮЧЕНИЕ

Феномен униполярности в течение почти двух столетий представляет собой область теории электродинамики, являющуюся источником множества трудностей в ее изучении . Целый ряд проведенных экспериментов, включавших в себя исследование конфигураций как «закрытого», так и «открытого» поля, позволил выявить их общую особенность: сохранение углового момента.

Реактивные силы, источником которых является магнит в «открытых» конфигурациях, в «закрытых» конфигурациях имеют своим источником весь намагниченный массив. Указанные выше выводы находятся в полном соответствии с теорией об Амперовых поверхностных токах, являющихся причиной магнитных эффектов . Источник магнитного поля (сам магнит) индуцирует Амперовы поверхностные токи на ярмо целиком. Как магнит, так и ярмо взаимодействуют с омическим током, пересекающим цепь.

В свете проведенных экспериментов представляется возможным высказать пару замечаний о противоречии между концепциями «вращающихся» и «неподвижных» силовых линий магнитного поля:

При наблюдении «открытых» конфигураций напрашивается предположение, что силовые линии магнитного поля вращаются, будучи «прикрепленными» к магниту, тогда как при наблюдении «замкнутых» конфигураций упомянутые выше силовые линии, предположительно, направлены на весь намагниченный массив.

В отличие от «открытых» конфигураций, в «закрытых», благодаря системе «магнит + ярмо», существует лишь активный момент вращения κ (M+Y) , C , воздействующий на активный (омический) ток С . Реакция активного тока на систему «магнит+ярмо» выражается в эквивалентном, но противоположном моменте вращения κ C , M+Y) . Общее значение момента вращения равно нулю: L - L M+Y L C - 0 и означает, что (Iw) M+Y =- (I) C .

Проведенные нами эксперименты подтверждают результаты измерений Мюллером униполярной двигательной индукции в применении к генерации ЭДС . К сожалению, Мюллеру (подобно Уэзли ) не удалось систематизировать наблюдавшиеся им факты.

Произошло это, по все видимости, по причине неверного понимания частей процесса взаимодействия. В своем анализе Мюллер сконцентрировал внимание на паре магнит-провод, нежели на системе «магнит + ярмо»/провод, которая по сути, и является физически релевантной.

Итак, логическое обоснование теорий Мюллера и Уэзли имет некоторые сомнения относительно сохранения момента вращения.

ПРИЛОЖЕНИЕ:
ДЕТАЛИ ЭКСПЕРИМЕНТА

С целью уменьшить момент силы трения на несущую часть магнита, нами было разработано приспособление, изображенное на Рис. 4 и фото 3.

Магнит был помещен нами в тефлоновую «лодочку», плавающую в чаше, наполненной ртутью. Сила Архимеда уменьшает фактический вес данного приспособления. Механический контакт между магнитом и ярмом достигается путем использования 4-х стальных шариков, размещенных в двух круглых канавках, имеющих форму окружности и расположенных на совмещенных поверхностях магнита и ярма. Ртуть добавлялась нами до момента достижения свободного скольжения магнита по ярму. Авторы выражают признательность Тому Е. Филипсу и Крису Гажлиардо за ценное сотрудничество.

Новая Энергетика N 1(16), 2004

Литература
J. Guala-Valverde, Physica Scripta 66, 252 (2002).
J. Guala-Valverde & R Mazzoni, Rev. Fac. Ing. UTA (Chile), 10, 1 (2002).
J. Guala-Valverde, P. Mazzoni & R. Achilles, Am.J. Physics 70, 1052 (2002).
J. Guala-Valverde, Spacetime & Substance 3 (3), 140 (2002).
J. Guala-Valverde, Infinite Energy 8, 47 (2003)
J. Guala-Valverde et al, New Energy Technologies 7 (4), 37 (2002).
J. Guala-Valverde, «News on Electrodynamics», Fond. Louis de Broglie, in press (2003).
F.R. Fern6ndez, Spacetime & Substance, 4 (14), 184 (2002).
R. Achilles, Spacetime & Substance, 5 (15), 235 (2002).
G.R. Dixon & E. Polito, «Relativistic Electrodynamics Updated», (2003) www.maxwellsociety.net
J. Guala-Valverde & P. Mazzoni, Am.J. Physics, 63, 228 (1995).
À. Ê. Ò. Assis & D. S. Thober, «Unipolar Induction..»., Frontiers of Fundamental Physics. Plenum, NY pp.409 (1994).
A.K.T. Assis, Weber"s Electrodynamics, Kluwer, Dordrecht (1994).
E. H. Kennard, Phil. Mag.23, 937 (1912), 33, 179 (1917).
D.F. Bartlett et al.Physical Review D 16, 3459 (1977).
W. K. H. Panofsky & M. Phillips, Classical Electricity and Magnetism, Addisson-Wesley, NY (1995).
R. Feynman, The Feynman Lectures on Physics-II, Addisson-Wesley, NY (1964).
A. Shadowitz, Special Relativity, Dover, NY (1968).
A. G. Kelly, Physics Essays, 12, 372 (1999).
À. Ê. Ò. Assis, Relational Mechanics, Apeiron, Montreal (1999).
H. Montgomery, EurJ.Phys., 25, 171 (2004).
T. E. Phipps & J. Guala-Valverde, 21 st Century Science & Technology, 11, 55 (1998).
F. J. Muller, Progress in Space-Time Physics, Benj. Wesley Pub., Blumberg, p.156 (1987).
FJ. Muller, Galilean Electrodynamics, 1, N 3, p.27 (1990).
J.P. Wesley, Selected Topics in Advanced Fundamental Physics, Benj. Wesley Pub., Blumberg, p.237 (1991).

Жорже Гуала-Валверде (Jorge Guala-Valverde), Педро Маззони (Pedro Mazzoni) Униполярный мотор-генератор // «Академия Тринитаризма», М., Эл № 77-6567, публ.12601, 17.11.2005


Начало современного этапа в развитии электротехники относится к 90-м годам прошлого столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу электропривод. Электрификация началась тогда, когда оказалось возможным строить крупные электрические станции в местах, богатых первичными энергоресурсами, объединять их работу на общую сеть и снабжать электроэнергией любые центры и объект электропотребления.

Техническая сторона электрификации заключалась в разработ­ке многофазных систем, из которых практика сделала выбор в пользу системы трехфазной. Наиболее важным» и во всяком случае новыми элементами трехфазной системы были электродвига­тели, действие которых основано на использовании явления вращающегося магнитного поля.

Ранее упоминался опыт Араго, в котором диск и вращающийся магнит отражали принцип асинхронного электродвигателя с вра­щающимся магнитным полем. Од­нако это поле создавалось не неподвижным устройством, каким в современных машинах является статор, а вращающимся магнитом (рис. 4.2).

Долгое время явление, откры­тое Араго, не находило практиче­ского применения. Только в 1879 г. У. Бели (Англия) сконструиро­вал прибор (рис. 6.1), в котором пространственное перемещение магнитного поля осуществлялось с помощью неподвижного уст­ройства - путем поочередного намагничивания четырех расположснныхпо периферии круга электромагнитов. Намагничива­ние производилось импульсами постоянного тока, посылаемыми в обмотки электромагнитов специально приспособленным для этого коммутатором. Полярность верхних концов стержней из­менялась в определенной последовательности так, что через каждые восемь переключений коммутатора магнитный поток изменял свое направление п пространстве на 360. Над полюсами электромагнитов, как и в опытах Араго, был подвешен медный диск 2. Бели указывал, что при бесконечно большом числе элект­ромагнитов можно было бы обеспечить равномерное вращение магнитного поля. Прибор Бели не нашел никакого применения. Тем не менее, он был некоторым связующим звеном между опы­том Араго и более поздними исследованиями. С позиций сегод­няшнего дня представляется крайне простым осуществление вращающегося поля в установке Бели или в подобном прибо­ре иной конструкции путем питания электромагнитов синусои­дальными токами с различными начальными фазами. Однако в 80-х годах прошлого столетия на это ушло несколько лет ра­боты и поисков многих ученых, среди которых были француз­ский физик Марсель Депре, разработавший в 1883 г. систему синхронной связи двух движений, авторы одной из конструк­ций индукционных электросчетчиков Борель и Шалленбергер, изобретатель репульсионного двигателя И. Томсон, американский электротехник Ч. Бредли, немецкий инженер Ф. Хазельвандер и др. В связи с этим интересно привести фразу Илайю Томсона: «Трудно составить такую комбинацию из маг­нитов, переменного тока и кусков меди, которая не имела бы тенденции к вращению».



История открытия вращающегося магнитного поля и многофаз­ных систем до крайности запутана. В 90-е годы прошли многие су­дебные процессы, на которых разные фирмы, скупившие патенты изобретателей, пытались утвердить свои права на многофазные системы. Только американская фирма Вестингауз провела более 25 судебных процессов.

Однако исчерпывающие и получившие наибольшую извест­ность экспериментальные и теоретические исследования вращаю­щегося магнитного поля выполнили независимо друг от другавыдающиеся ученые итальянец Галилео Феррарис (1847-1897 гг.) и серб Цикола Тесла (1856-1943 гг.).

Г. Феррарис утверждал, что суть явления вращающегося магнитного поля он осознал еще в 1885 г., но доклад «Электродинами­ческое вращение, произведенное с помощью переменных токов» он сделал в Туринской академии (членом которой он состоял с 1880 г.) 18 марта 1888 г.

Н. Тесла в своей автобиографии рассказывал, что идея двух­фазного асинхронного двигателя родилась у него еще в 1882 г., когда он работал в Будапештской телеграфной компании. Гуляя в парке с другом, он, осененный идеей, «тростью сделал на песке на­бросок принципа, который изложил шесть лет спустя на конфе­ренции в Американском институте электроинженеров». Доклад в этом институте состоялся 16 мая 1888 г., т.е. на два месяца позд­нее доклада Феррариса. Но первую заявку на получение патента на многофазные системы Тесла подал еще 12 октября 1887 г., т.е. ранее выступления Феррариса.

Остановимся сначала на работе Г. Феррариса исходя не из при­оритетных соображений, а из того, что в его работе дан более об­стоятельный теоретический анализ и еще потому, что именно перевод доклада Феррариса в английском журнале попал в свое время в руки М. О. Доливо-Добровольскому и вызвал первый им­пульс в серии последующих замечательных изобретений. Галилео Феррарис был известным в Европе ученым, представ­лявшим Италию на разных международных выставках и конгрес­сах.

Профессор разрабатывал теорию переменных токов и умел в очень ясной форме объяснять трудные физические процессы. Вот как в переложении им было объяснено явление враща­ющегося магнитного поля.

Рассмотрим показанную на рис. 6.2. пространствен­ную диаграмму, на которой ось x: представляет собой положительное направление вектора магнитной индукций создаваемой одной из катушек, а ось у положительноенаправление поля другой катушки. Для момента времени, ког­да индукция одного поля в точке О изображается отрезком OA, а другого - ОВ, суммарная результирующая индукция изобразит­ся отрезком OR. При изменениях OA и ОБ точка R перемещается но кривой, форма которой определяется законами изменений во времени двух полей. Если два поля имеют одинаковые амплитуды и сдвинуты по фазе на четверть периода, то геометрическим мес­том точки R станет окружность. Налицо вращение магнитного поля. Если фазу одного из полей или возбуждающего его тока изменить на 180 , то изменится и направление вращения резуль­тирующего поля. Если поместить в это поле снабженный валом и подшипниками медный цилиндр, то он будет вращаться. Позднее асинхронные двигатели с полым ротором в виде медного стакана получили название двигателей Фер­рариса.

Но как получить два переменных тока, сдвинутых относительно друг друга по фазе Феррарис предложил метод «расщепления фаз», при кото­ром искусственным путем создавался сдвиг по фазе при включении в цепи двух взаимоперпендикулярно распо­ложенных катушек фазосмещающих устройств. На рис. 6.3. показан внеш­ний вид модели двухфазного асинх­ронного двигателя, хранящейся в музее г. Турина, директором которого конца жизни был Галилео Феррарис.

В своем теоретическом анализе Феррарис, находясь в плену методов «слаботочной техники», предположил, что асинхронный Читатель должен работать в режиме, согласованном с источником "чтения, то есть в режиме передачи от источника к двигателю Максимальной мощности. Отсюда вытекало условие работы двига­ла при 50-процентном скольжении, и, как следствие, кпд такого двигателя мог быть только ниже 50 %. «Эти вычисления, - пола­гал Феррарис, - и экспериментальные результаты подтвержда­ет очевидное a priori заключение, что аппарат, основанный на этом принципе, не может иметь какого-либо практического значения...». Эта досадная и поучительная ошибка выдающегося уче­ною снижала ценность открытия и ограничивала область его при­менения только измерительными устройствами. Но именно эта злополучная для Феррариса фраза оказалась счастливой нахшкоЙ дл я Дат 11 по-Доб ронол и-кот.

Никола Тесла, одни из самых известных и плодовитых ученых в области электротехники, начинавший и 80-х подах прошлого ве­ка свою научную карьеру, получил только н области многофазных систем 41 патент. Некоторое время Тесла работал и Эднсоновской компании в Париже (1882-1884 гг.>, а затем переехал в США. В 1888 г. псе своп патенты по многофазным системам Тесла продал главе известной фирмы Джорджу Всстннгаузу, который в своих планах развития техники переменною тока (в противовес компа­нии Эдисона) сделал станку иа работы Тесла. Впоследствии Тесла мною внимания уделял технике высоких частот ("трансформатор Тесла") и идее передачи электроэнергии без проводов. Интересная деталь: прн решении вопроса о стандартизации промышленной частоты, а диапазон предложении был от 25 до 133 Гц, Тесла реши­тельно высказался за принятую им для своих опытных установок частоту 60 Гц. Тогда отказ инженерен Вестннгауза от предложе­ния Тесла послужили начальным импульсом для ученого, решив­шего расстаться с Вестингаулом. Но вскоре именно эта частота бы.1.1 принята н США в качестве стандартной.

В патентах Тесла были описаны различные варианты много­фазных систем, В отличие от Феррариса Тесла полагал, что мно­гофазные токи следует получать от многофазных источников, а не пользоваться фазосмещающими устройствами. Утверждая, что двухфазная система, являясь минимальным вариантом системы многофазной, окажется и наиболее экономичной, Тесла, а вслед за ним и фирма Вестннгауза, основное внимание сосредоточили именно на этой системе.

Схематически система Тесла в ее наиболее характерной фор­ме представлена на рис, 6.4, слепа изображен синхронный гене­ратор, справа - асинхронный двигатель. В генераторе между полюсами вращались две взаимно перпендикулярные катушку в которых генерировались дна тока, сдвинутые по фазе на 90. Концы каждой катушки были выведены на кольца, расположен­ные на валу генератора (на чертеже для ясности эти кольцаимеют различные диаметры).

Ротор двигателя тоже имел обмотку в виде двух расположенных под прямым углом друг к другу замкнутых на себя катушек. Основным недостатком двигателя Тесла, который впоследствии сделал его неконкурентоспособным, было наличие выступающих полюсов с сосредоточенной обмоткой. Эти двигатели имели боль­шое магнитное сопротивление и крайне неблагоприятное распре­деление намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Таковы были следствия механического переноса в технику переменного тока конструктивных схем машины постоянного тока.

Конструкция обмотки ротора, как выяснилось позднее, тоже оказалась неудачной. Действительно, выполнение обмоток сосре­доточенными (а не распределенными по всей окружности ротора) при выступающих полюсах на статоре приводило к ухудшению пусковых условий двигателя (зависимость пускового момента от начального положения ротора), а то обстоятельство, что обмотки ротора имели сравнительно большое сопротивление, ухудшало ра­бочие характеристики.

Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Известно, что значитель­ную долю стоимости установки для передачи электроэнергии со­ставляют затраты на линейные сооружения и в частности на линейные провода. В связи с этим казалось очевидным, что чемменьше принятое число фаз, тем меньшим будет число прово­дов и тем, следовательно, экономичнее устройство электропе­редачи. Двухфазная система требовала применения четырех проводов, а удвоение числа проводов по сравнению с установ­ками постоянного или однофазного переменного токов пред­ставлялось нежелательным. Поэтому Тесла предлагал в некоторых случаях применять в двухфазной системе трехпроводную линию, то есть делать один провод общим. В этом слу­чае число проводов уменьшалось до трех. Однако расход металла на провода при этом снижался меньше, чем можно было ожидать, так как сечение общего провода должно быть примерно в 1,5 раза (точнее, в 2 раз) больше сечения каж­дого из двух других проводов.

Встретившиеся экономические и технические трудности за­держивали внедрение двухфазной системы в практику. Фирма Вестингауз построила несколько станций по этой системе, из которых наибольшей по масштабам была Ниагарская гидроэлект­ростанция.

Было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора...

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…


ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ