Магний (Mg) – металлический «двигатель» организма. Физические свойства магния

Магний был впервые обнаружен в районе Фессалия, Греция, и назван Магнезия. Это третий самый распространенный металлический элемент в земной коре, однако он редко в чистом виде из-за того, что легко образует связи с другими элементами. Металлический магний впервые был получен из руды в 1808 году в небольших количествах сэром Хамфри Дэви, а промышленное производство впервые началось в 1886 году в Германии.

Магний является самым легким из всех широко используемых конструкционных материалов с плотностью 1,7 г/см3 (106,13 фунтов /куб.фут), примерно на одну треть легче, чем алюминий и титан, и одна четверть плотности стали. Несмотря на это преимущество, производство первичного магния в 2012 году составило 905 тыс. тонн, только 2,5% производства первичного алюминия (45,2 млн. тонн) и 0,06% производства необработанной стали (1546 млн. тонн). Однако объем производства магния больше, чем титана (211 тыс. тонн).

Небольшие добавки магния в алюминий придают огнестойкость и прочность. Близость магния с серой делает его незаменимым в производстве определенных сортов сырой стали. С помощью магния также восстанавливают металлического титана из тетрахлорида титана в процессе Кролла, а также получают очень качественные сорта чугуна. Вместе на эти четыре сферы приходилось 61% потребления магния в 2012 году. Таким образом, несмотря на свой относительный статус «пескаря» в структуре производства материалов, магний играет центральную роль в изготовлении и использовании конкурирующих металлических продуктов.

Поставки магния

Мировое производство первичного магния, по оценкам Roskill, увеличилось с 499 тыс. тонн в 2002 году до 905 тыс. тонн в 2012 году, среднегодовой темп роста (CAGR) - 6,1%. Производство первичного металла магния ограничивается десятью странами.

Китай продолжает доминировать в производстве первичного металлического магния. Страна произвела более 730 тысяч тонн металла в 2012 году, и на ее долю в этот год пришлось более чем 75% от общего объема поставок. В Китае, однако, имел место сдвиг в производстве. Обильный и дешевый газ в качестве побочного продукта при производстве кокса побудил производителей магния обратить свое внимание на провинцию Шэньси в поисках более высокой прибыли. Это заставило некоторые традиционные магниевые провинции бороться с конкурентами, а в целом в китайской промышленности магния коэффициент использования производственных мощностей едва превышает 50%. Кроме того, в Китае была произведена консолидация в промышленности, и восемь китайских производителей сейчас находятся в топ-10 глобальных производителей.

Несмотря на недавние усилия китайского правительства по консолидации отрасли, большинство китайских производственных мощностей по-прежнему разбросаны на относительно небольших заводах, а консолидация, в основном, происходит на корпоративном уровне. Восемь китайских компаний находятся в топ-10 мировых поставщиков по мощности, которая для каждой превышает 50 тыс. тонн в год, хотя только пять из них в 2011 году произвели более 30 тыс. тонн, а одна закрылась в 2012 году.

Количество компаний с мощностью ниже 50 тыс. тонн, и производством намного меньше, чем 30 тыс. тонн, неизвестно, но Roskill оценивает их число примерно в 50. В совокупности, на эти небольшие заводы пришлось около трети мировых мощностей в 2012 году.


Источник: "Металлический магний: глобальные промышленные рынки и перспективы, 2012 год", Roskill Information Services Ltd.

Несмотря на несколько закрытых предприятий в преддверии спада 2008/09 годов, особенно в Канаде, производство в США, России и Израиля с тех пор увеличилось, хотя и в значительной степени удовлетворяет спрос со стороны растущей промышленности по выпуску металлического титана. Вторичное производство магния более равномерно распространено по всему миру, где США по-прежнему являются переработчиком номер один. Новые заводы по производству первичного магния были открыты в Малайзии и Южной Корее в 2010 году, а Иран должен был последовать их примеру в 2013 году. Ожидаемый запуск электролитического завода Цинхай Солт-Лейк в Китае, мощностью 100 тыс. тонн в год, может еще и изменить расстановку сил в Китае на короткий срок.

Основными производителями первичного магния за пределами Китая являются ВСМПО-Ависма и Соликамский магниевый завод в России; US Magnesium в США; Dead Sea Magnesium в Израиле; Усть-Каменогорский титано-магниевый комбинат в Казахстане; Rima Industrial в Бразилии; CVM Minerals в Малайзии; Magnohrom в Сербии; и POSCO в Южной Корее.

Вторичный магний из переработанных магниевых сплавов, и в качестве компонента переработанных алюминиевых сплавов, является важным источником поставок, в частности, в США, где он составляет около половины от общего объема поставок. Он имеет гораздо меньшее значение в других местах. Мировые мощности и производство вторичного магния (за исключением алюминиевых сплавов, которые образуют цикл с обратной связью) оцениваются Roskill более чем в 200 тыс. тонн в год, при этом около 40% мощностей сосредоточены в США.

Большая часть международной торговли магнием - это экспорт из Китая, на долю которого приходилось половина экспорта необработанного магния (99,8% Mg экспорт необработанной магния в 2012 году. Этот материал в основном импортируют Канада, Япония и Европа. Американский рынок защищен от китайского импорта высокими антидемпинговыми пошлинами, и магний в страну поставляется из Израиля, либо это внутреннее первичное и вторичное производство. По данным Global Trade Atlas, проанализированным Roskill, международная торговля необработанным магния упала с примерно 500 тыс. тонн в 2007 году до 305 тыс. тонн в 2009 году, выросла до 480 тыс. тонн в 2011 году, но немного упала в 2012 году.

Около 50 тыс. тонн отходов и лома было продано в 2012 году (по сравнению с 62 тыс. тонн в 2007 году), и это, в основном, экспорт из Канады, Германии и Австрии и импорт в США, Чехию и Венгрию. Кроме того, примерно 110 тыс. тонн были проданы в 2012 году в виде опилок, стружек, гранул и порошка, при этом, в основном, это экспорт из Китая и импорт в Германию, Турцию и Канаду. Наконец, 37 тыс. тонн кованых изделий были проданы в 2012 году (по сравнению с 46 тыс. тонн в 2011 году), и это, в основном, экспорт из Китая, Австрии и Германии, и импорт в Тайвань, Новую Зеландию и Великобританию.

Спрос на магний

Глобальное видимое потребление (производство + импорт - экспорт) магния, достигло 1050 тыс. тонн в 2007 году, среднегодовой темп роста 8% по сравнению с 630 тыс. тонн, потребленными в 2001 году. Потребление первичного металлического магния сократилось на 7% в 2008 году и еще на 15% в 2009 году, упав ниже 690 тыс. тонн, так как мировой экономический кризис привел к значительному снижению спроса на содержащие магний продукты.

Однако рынок восстановился, превысив уровень 2007 года в 2011 году и показав новый пик спроса в 2012 году. Вторичное использование магния дополнительно увеличило потребление, а общий объем потребления магния превысил 1 млн. тонн в 2007 году и 1,1 млн. тонн в 2012 году.

Китай доминирует в мировом потреблении с объемом в 340 тыс. тонн в 2012 году, 33% от общего объема. Другие крупные рынки для магния - это Северная Америка (23% мирового потребления) и Европа (18%). Россия и Япония также крупные потребители, на их долю в совокупности приходится 12%.

Исторически сложилось так, что алюминиевые сплавы являются основной сферой применения магния во всем мире, хотя в 2012 году объем потребления магния в этой конечной сфере потребления и объем потребления магния в сплавах для литья под давлением сравнялись, при этом на каждую сферу приходилось около 365 тыс. тонн, или 33% от общего объема потребления. Упаковочная промышленность является крупнейшим рынком для магния в алюминиевых сплавах, затем следует транспорт, строительство и потребительские товары длительного пользования.

Автомобильная промышленность на сегодняшний день является крупнейшим потребителем компонентов литого магния. Литье под давлением из магниевого сплава используется для корпусов, узлов, кронштейнов и других компонентов для всех слоев автотранспортных средств. Среднее применение магния на автомобиль в 2012 году было 2,3 кг, а в некоторых моделях достигало 26 кг. Магний применяется в изготовлении литых корпусов для устройств связи (например, мобильные телефоны и смартфоны), ноутбуков, планшетных компьютеров и другого электронного оборудования. Это является второй по величине сферой использования литого магния, после автомобилей.

Производство титановой губки (т.е. сырого металлического титана) было третьей по величине сферой потребления магния, на которую приходилось около 123 тыс. тонн или 11% от общего мирового потребления в 2012 году, а десульфуризация стала четвертой по величине сферой использования, с объемом 119 тыс. тонн в 2012 году. Использование магния в сталеплавильном производстве уменьшилось в последние годы, в связи с глобальным экономическим кризисом и, как следствие, замедлением роста (или снижением) производства стали во многих странах. В среднем, в мире используется примерно 50 г/т стали.


Источник: "Металлический магний: Глобальные промышленные рынки и перспективы, 2012 год", Roskill Information Services Ltd.

Магний также используется в других приложениях, например, как сфероидизирующий модификатор для чугуна и как катодная защита, способ предотвращения коррозии, вынуждающий все поверхности металлической структуры быть катодами через предоставление внешних анодов активных металлов. По оценкам Roskill, использование магния для этих двух приложений было порядка 65 тыс. тонн и 60 тыс. тонн в 2012 году.

В то время как рост производства автомобилей в некоторых регионах повысил потребление с 2008/09 спада, рынок был несколько сдержан снижением европейских поставок транспортных средств. Тем не менее, в результате давления от сокращения выбросов, рост использования магния в транспортной сфере продолжает опережать использование металла в традиционных материалах, такие как сталь, и рынок литья под давлением, как прогнозируется, будет расти на 6-7% в год до 2017 года. В алюминиевых сплавах, магний используется преимущественно в упаковках, а этот рынок продолжает показывать сильное расширение, ввиду экономического роста в развивающихся странах.

Облегчение веса автомобилей и Китай стимулируют рост спроса на магний

По оценкам Roskill, потребление магния достигло нового пика в 2012 году, 1,1 млн. тонн, при этом спрос увеличивался на 5,5% в год в течение последнего десятилетия. Крупнейшими отраслями-потребителями магния остаются промышленность литья под давлением и алюминиевые сплавы, на каждую из которых приходится треть от общего потребления. Транспортная промышленность является крупнейшим потребителем литья и вторым крупнейшим потребителем металла, после алюминиево-магниевых сплавов в упаковках.

Промышленность магния имеет выгоду от роста автомобильного производства, во главе с Китаем, а также повышения удельного расхода магния в автомобилях, так как производители стремятся соответствовать введенным государственным целевым показателям сокращения выбросов, а рост стоимости топлива влияет на потребительские покупательные тенденции. Постоянные усилия по снижение веса означают, что рост потребления магния будет продолжаться, по крайней, на 5,0% в год до 2017 года. Использование магния в литых деталях, скорее всего, будет расти быстрее, на 6,5% в год, но рынок будет сдерживаться более низкими темпами роста десульфурации и сфероидизирующего отжига стали.

Рост китайского потребления более чем компенсировал небольшое падение в остальных странах мира с 2007 года, а на Азию в 2012 году приходилось 43% от общемирового объема по сравнению с 35% пять лет назад. На долю Северной Америки приходилось 20% потребления, а Европы - 15%. Индия и Южная Корея показали уверенный рост потребления за последние пять лет, но при низкой базе в натуральном выражении, в то время потребление в России выросло почти в два раза, в связи с увеличением производства титана. Азия, точнее Китай, будут по-прежнему демонстрировать самые высокие темпы роста спроса на магний на региональной основе до 2017 года.

Китай доминирует в глобальных поставках, но внутренняя конкуренция часто упускается из виду

В производстве первичного магния продолжает доминировать Китай, на долю которого, по оценке Roskill, приходилось 75% мирового производства в 2012 году. России и США вместе представляют собой еще 16%, далее следуют более мелкие производители - Израиль, Казахстан, Бразилия, Сербия и Украина. Малайзия и Южная Корея вышли на рынок в последние годы, хотя и в небольшом масштабе, но это и некоторые ограниченное расширение существующих операций сделали немного, чтобы ослабить растущую долю Китая. Вторичный магния, производство которого в 2012 году составило 211 тыс. тонн, поступает в основном из лома литья. Северная Америка является основным источником вторичного магния, затем следует Европа, так как эти регионы по-прежнему являются крупными потребителями продукции на основе магния.

Лидирующие позиции Китая в первичном производстве магния отражают внутренняя доступность и низкая стоимость ферросилиция и энергии (в виде угля, кокса и электроэнергии), которые являются основными компонентами энергоемкого, теплового пиджинг-процесса получения металла. Тем не менее, столкнувшись с ростом цен на энергоносители и государственным давлением с целью снижения выбросов, китайские магниевые компании вложились в оптимизацию процесса с целью снижения затрат. Хотя Китай часто рассматривается как единое целое в случае с поставками магния, во внутренней промышленности также сильно выросла конкуренция, в связи с недавним повышением доступности кокс газа, в результате перемещения внутреннего производства в провинцию Шэньси, что ограничило рост в провинциях Шаньси и Нинся, и в результате потерь в производстве в других местах.

Низкие капитальные издержки в переходе от стендовых технологических установок означают, что перемещение отечественного производства из провинции в провинцию происходит относительно просто, но приводит к значительному росту мощностей. Roskill оценивает китайские первичные мощности в размере 1,3 млн. тонн, но из них только 0,8-0,9 млн. тонн используются; остальные мощности законсервированы или неэкономичны. Эта тенденция привела к закрытию, по крайней мере, одного крупного производителя в Китае в 2012 году, а также к консолидации отрасли.

Несмотря на ценовую конкурентоспособность и избыточные мощности в Китае, новый электролитический завод в провинции Цинхай, мощностью 100 тысяч тонн, который должен открыться в ближайшее время, мог бы еще больше изменить внутренний ландшафт. Несколько компаний, использующих новые процессы или вариации из существующих электролитических и термических методов, также продолжают исследовать возможность первичного производства магния в других странах, особенно в Австралии и Канаде. Однако, пока эти проекты не смогут конкурировать с китайскими производственными издержками и быть экономически выгодными при текущих и прогнозируемых ценах на магний в 2500-3000 долл./т, Китай, похоже, будет постепенно увеличивать свою долю рынка по мере того, как спрос растет.

Цены на магний

В мире нет площадок для торговли магнием и поэтому в большинстве случаев условия контрактов согласовываются напрямую между производителями и потребителями. Тем не менее, большой объем китайского материала продается на спотовой основе торговцами и китайскими производителями на европейский, японский и внутренний рынок. Основными рыночными ценами на магний, следовательно, являются китайские внутренние и экспортные цены на металл с чистотой 99,8% Mg, и европейские цены экс-Роттердам склад. Некоторые поставки магния происходят за пределами торговли Китая с другими странами, но они образуют меньшую часть от общего открытого рынка.

Рост спроса, в частности, в Китае, привел к быстрому росту цен в четвертом квартале 2007 года и первом полугодии 2008 года. На пике своего роста в первой половине 2008 года цены выросли выше 6000 долл./т FOB Китай для слитка магния с чистотой 99,8%. В последующие годы цены с отступили на более низкие уровни, движимые сокращением потребности в связи с глобальным экономическим кризисом, хотя по-прежнему находились выше, чем до пика 2007/08 годов. Отмена 10% экспортной пошлины на китайские поставки в конце 2012 года вызвала волновой эффект как для европейских цен, так и для китайских экспортных цен, обусловив с 2013 года цены 2500-3000 долл./т FOB Китай. Из-за антидемпинговых пошлин на китайский материал, в США магний продается с премией.

Магний — широко распространенный в природе металл, имеющий огромное биогенное значение для человека. Он является составной частью большого количества различных минералов, морской воды, гидротермальных вод.

Свойства

Серебристый блестящий металл, очень легкий и пластичный. Немагнитный, обладает высокой теплопроводностью. При нормальных условиях на воздухе покрывается оксидной пленкой. При нагревании свыше 600 °С металл горит с выделением большого количества тепла и света. Горит в углекислом газе и активно реагирует с водой, поэтому его бесполезно тушить традиционными способами.

Магний не взаимодействует со щелочами, реагирует с кислотами с выделением водорода. Устойчив к галогенам и их соединениям; например, не взаимодействует с фтором, плавиковой кислотой, сухим хлором, йодом, бромом. Не разрушается под воздействием нефтепродуктов. Магний малостоек к коррозии, этот недостаток исправляют добавлением в сплав небольших количеств титана, марганца, цинка, циркония.

Магний необходим для здоровья сердечно-сосудистой и нервной систем, для синтеза белов и усвоения организмом глюкозы, жиров и аминокислот. Оротат магния (витамин В13) играет важную роль в обмене веществ, нормализует сердечную деятельность, препятствует отложению холестерина на стенках сосудов, увеличивает работоспособность организма спортсменов, не уступая по эффективности стероидным препаратам.

Получают магний различными способами, из природных минералов и морской воды.

Применение

— Большая часть добываемого магния используется для производства магниевых конструкционных сплавов, востребованных в авиационной, автомобильной, атомной, химической, нефтеперерабатывающей промышленности, в приборостроении. Магниевые сплавы отличаются легкостью, прочностью, высокой удельной жесткостью, хорошей обрабатываемостью. Они немагнитны, отлично отводят тепло, обладают в 20 раз большей устойчивостью к вибрации, чем легированная сталь. Магниевые сплавы применяются для изготовления резервуаров для хранения бензина и нефтепродуктов, деталей атомных реакторов, отбойных молотков, пневмотруб, вагонов; емкостей и насосов для работы с плавиковой кислотой, для хранения брома и йода; корпусов ноутбуков и фотоаппаратов.
— Магний широко используется для получения некоторых металлов методом восстановления (ванадий, цирконий, титан, бериллий, хром и т. д.); для придания стали и чугуну лучших механических характеристик, для очистки алюминия.
— В чистом виде входит в состав многих полупроводников.
— В химической промышленности порошковый магний используют для осушения органических веществ, например, спирта, анилина. Магнийорганические соединения применяются в сложном химическом синтезе (например, для получения витамина А).
— Порошок магния востребован в ракетной технике в качестве высококалорийного горючего. В военном деле — при производстве осветительных ракет, трассирующих боеприпасов, зажигательных бомб.
— Чистый магний и его соединения идут на изготовление химических мощных источников тока.
— Окись магния применяется для изготовления тиглей и металлургических печей, огнеупорного кирпича, при изготовлении синтетической резины.
— Кристаллы фторида магния востребованы в оптике.
— Гидрид магния представляет собой твердый порошок, содержащий большой процент водорода, который легко получить нагреванием. Вещество используется в качестве «хранилища» водорода.
— Сейчас реже, но раньше порошок магния широко использовался в химических фотовспышках.
— Соединения магния используют для отбеливания и протравливания тканей, для изготовления теплоизоляционных материалов, особых сортов кирпича.
— Магний входит в состав многих лекарственных средств, как внутреннего, так и наружного (бишофит) применения. Его используют как противосудорожное, слабительное, седативное, сердечное, противоспазматическое средство, для регуляции кислотности желудочного сока, как антидот при отравлении кислотами, как дезинфицирующее желудочное средство, для лечения травм и суставов.
— Магний стеарат используется в фармацевтической и косметической промышленности как наполнитель таблеток, пудры, кремов, теней; в пищевой промышленности применяется как пищевая добавка Е470, предупреждающая слеживание продуктов.

В химическом магазине «ПраймКемикалсГрупп» вы можете купить химический магний и его различные соединения — магний стеарат, бишофит магний хлористый, магний углекислый и другие, а также широкий спектр хим реактивов , лабораторной посуды и других товаров для лабораторий и производства. Цены и уровень сервиса вам понравятся!

В нашей стране богатые месторождения магнезита расположены на Среднем Урале (Саткинское) и в Оренбургской области (Халиловское). А в районе города Соликамска разрабатывается крупнейшее в мире месторождение карналлита. Доломит - самый распространенный из магнийсодержащих минералов - встречается в Донбассе, Московской и Ленинградской областях и многих других местах.

Получают металлический магний двумя способами - электротермическим (или металлотермическим) и электролитическим. Как явствует из названий, в обоих процессах участвует электричество. Но в первом случае его роль сводится к обогреву реакционных аппаратов, а восстанавливают окись магния, полученную из минералов, каким-либо восстановителем, например углем, кремнием, алюминием. Этот способ довольно перспективен, в последнее время он находит все большее применение. Однако основной промышленный способ получения магния - второй, электролитический.

Электролитом служит расплав безводных хлоридов магния, калия и натрия; металлический магний выделяется на железном катоде, а на графитовом аноде разряжаются ионы хлора. Процесс идет в специальных ваннах-электролизерах. Расплавленный магний всплывает на поверхность ванны, откуда его время от времени выбирают вакуум-ковшом и затем разлива гот по формам. Но на этом процесс не заканчивается: в таком магнии еще слишком много примесей. Поэтому неизбежен второй этап - очистка магния. Рафинировать магний можно двумя путями - переплавкой и флюсами или возгонкой в вакууме. Смысл первого метода общеизвестен: специальные добавки - флюсы - взаимодействуют с примесями и превращают их в соединения, которые легко отделить от металла механическим нут ем. Второй метод - вакуумная возгонка - требует более сложной аппаратуры, но с его помощью получают более чистый магний. Возгонку ведут в специальных вакуум-аппаратах - стальных цилиндрических ретортах. «Черновой» металл помещают на дно реторты, закрывают ее и выкачивают воздух. Затем нижнюю часть реторты нагревают, а верхняя все время охлаждается наружным воздухом. Под действием высокой температуры магний возгоняется - переходит в газообразное состояние, минуя жидкое. Пары его поднимаются и конденсируются на холодных стенках верхней части реторты. Таким путем можно получать очень чистый металл, содержащий свыше 99,99% магния.

Из царства Нептуна

Но не только земная кора богата магнием - практически неисчерпаемые и постоянно пополняющиеся запасы его хранят голубые кладовые океанов и морей. В каждом кубометре морской воды содержится около 4 кг магния. Всего же в водах мирового океана растворено более 64016 т этого элемента.

Добыча магния

Как добывают магний из моря? Морскую воду смешивают в огромных баках с известковым молоком, приготовленным из перемолотых морских раковин. При этом образуется так называемое магнезиальное молоко, которое высушивается и превращается в хлорид магния. Ну, а дальше в ход идут электролитические процессы.

Источником магния может быть не только морская вода, но и вода соленых озер, содержащая хлористый магний. У нас в стране такие озера есть: в Крыму - Сакское и Сасык-Сивашское, в Поволжье - озеро Эльтон и многие другие.

Для каких целей используют элемент № 12 и его соединения?

Магний чрезвычайно легок, и это свойство могло бы сделать его прекрасным конструкционным материалом, но, увы - чистый магнии мягок и непрочен. Поэтому конструкторы используют магний в виде сплавов его с другими металлами. Особенно широко применяются сплавы магния с алюминием, цинком и марганцем . Каждый из компонентов вносит свой «пай» в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионную стойкость. Ну, а магний? Магний придает сплаву легкость - детали из магниевого сплава на 20-30% легче алюминиевых и на 50-75% - чугунных и стальных... Есть немало элементов, которые улучшают магниевые сплавы, повышают их жаростойкость и пластичность, делают устойчивее к окислению. Это литий , бериллий , кальций , церий , кадмий , титан и другие.

Магниевая ракета не взлетит, но...

Но есть, к сожалению, и «враги» - железо, кремний , никель ; они ухудшают механические свойства сплавов, уменьшают их сопротивляемость коррозии.

Магниевые сплавы находят широкое применение. Авиация и реактивная техника, ядерные реакторы, детали моторов, баки для бензина и масла, приборы, корпуса вагонов, автобусов, легковых автомобилей, колеса, масляные насосы, отбойные молотки, пневмобуры, фото и киноаппараты, бинокли - вот далеко не полный перечень областей применения магниевых сплавов.

Немалую роль играет магний в металлургии. Он применяется как восстановитель в производстве некоторых ценных металлов - ванадия , хрома , титана, циркония . Магний, введенный в расплавленный чугун, модифицирует его, т. е. улучшает его структуру и повышает механические свойства. Отливки из модифицированного чугуна с успехом заменяют стальные поковки. Кроме того, металлурги используют магний для раскисления стали и сплавов.

Свойство магния (в виде порошка, проволоки или ленты) - гореть белым ослепительным пламенем - широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. Хорошо знакомы с магнием фотографы: «Спокойно! Снимаю!» - и яркая вспышка магния на мгновение ослепляет вас. Впрочем, в этой роли магний выступает все реже - электрическая лампа «блиц» вытеснила его практически повсеместно.

Применение магния

И еще в одной грандиозной работе - аккумуляции солнечной энергии - участвует магний. Он входит в состав хлорофилла, который поглощает солнечную энергию и с ее помощью превращает углекислый газ и воду в сложные органические вещества (сахар, крахмал и др.), необходимые для питания человека и животных. Без хлорофилла не было бы жизни, а без магния не было бы хлорофилла - в нем содержится 2% этого элемента. Много ли это? Судите сами: общее количество магния в хлорофилле всех растений Земли составляет около 100 млрд. т! Элемент № 12 входит и в состав практически всех живых организмов.

Если вы весите 60 кг, то приблизительно 25 г из них приходится на магний. Услугами магния широко пользуется медицина: всем хорошо знакома «английская соль» MgSO 4 -7H 2 O. При приеме внутрь она служит надежным и быстродействующим слабительным, а при внутримышечных или внутривенных вливаниях снимает судорожное состояние, уменьшает спазмы сосудов. Чистая окись магния (жженая магнезия) применяется при повышенной кислотности желудочного сока, изжоге, отравлении кислотами. Перекись магния служит дезинфицирующим средством при желудочных расстройствах.

Но медициной не ограничиваются области применения соединений магния. Так, окись магния используют в производстве цементов, огнеупорного кирпича, в резиновой промышленности. Перекись магния («новозон») применяют для отбелки тканей. Сернокислый магний используют в текстильной и бумажной промышленности, как протраву при крашении, водный раствор хлорида магния - для приготовления магнезиального цемента, ксилолита и других синтетических материалов. Карбонат магния MgCO 3 находит применение в производстве теплоизоляционных материалов.

И, наконец, еще одно обширное поле деятельности магния - органическая химия. Магниевый порошок используют для обезвоживания таких важных органических веществ, как спирт я анилин. Магнийорганические соединения широко применяют при синтезе многих органических веществ.

Итак, деятельность магния в природе и народном хозяйстве весьма многогранна. Но вряд ли правы те, кто думает: «все, что мог, он уже совершил». Есть все основания считать, что лучшая роль магния - впереди.


Продукты содержащие магний
  • СЫРЬЕ НА МОСТОВОЙ. При желании магний можно добывать даже из... простого булыжника: ведь в каждом килограмме камня, используемого для мощения дорог, содержится примерно 20 г магния. В таком процессе, правда, пока нет необходимости - магний из дорожного камня был бы слишком дорогим удовольствием.
  • МАГНИЙ, СЕКУНДА И ЭРА. Сколько содержится магния в океане? Представим себе, что с первых дней нашей эры люди начали равномерно и интенсивно добывать магний из морской воды и к сегодняшнему дню исчерпали все водные запасы этого элемента. Как вы думаете, какова должна быть «интенсивность» добычи? Оказывается, каждую секунду в течение почти 2000 лет надо было бы добывать по. миллиону тонн! А ведь даже во время второй мировой войны, когда производство этого металла было максимальным, из морской воды получали ежегодно (!) всего лишь по 80 тыс. т магния.
  • ВКУСНЫЕ ЛЕКАРСТВА. Статистика утверждает, что у жителей районов с более теплым климатом спазмы кровеносных сосудов случаются реже, чем у северян. Медицина объясняет это особенностями питания тех и других. Ведь известно, что внутривенные и внутримышечные вливания растворов некоторых солей магния снимают спазмы и судороги. Накопить в организме необходимый запас этих солей помогают фрукты и овощи. Особенно богаты магнием абрикосы , персики и цветная капуста . Есть он и в обычной капусте, картофеле, помидорах.
  • ОСТОРОЖНОСТЬ HE ПОВРЕДИТ. Работа со сплавами магния иногда причиняет немало хлопот - магний легко окисляется. Плавку и литье этих сплавов приходится вести под слоем шлака - иначе расплавленный металл может загореться от соприкосновения с воздухом.

При шлифовке или полировке магниевых изделий над станком обязательно устанавливается раструб пылеотсасывающего устройства, потому что распыленные в воздухе мельчайшие частицы магния создают взрывоопасную смесь.

Однако это не значит, что всякая работа с магнием чревата опасностью пожара или взрыва. Поджечь магний можно, только расплавив его, а сделать это в обычных условиях не так-то просто - большая теплопроводность сплава не позволит спичке или даже факелу превратить литые изделия в белый порошок окиси. А вот со стружкой или топкой лентой из магния нужно действительно обращаться очень осторожно.

  • ЖДАТЬ HE ПРИДЕТСЯ. Обычные радиолампы начинают нормально работать лишь после того, как их сетки нагреются до 800°С. Каждый раз, когда вы включаете радиоприемник или телевизор, приходится некоторое время ждать, прежде чем польются звуки музыки или замерцает голубой экран. Чтобы устранить этот недостаток радиоламп, польские ученые с кафедры электротехники Вроцлавского политехнического института предложили покрывать катоды ламп окисью магния: такие лампы начинают работать тотчас же после включения.
  • ПРОБЛЕМА ЯИЧНОЙ СКОРЛУПЫ. Несколько лет назад ученые Миннесотского университета в США избрали объектом научного исследования яичную скорлупу. Им удалось установить, что скорлупа тем прочнее, чем больше она содержит магния. Значит, изменяя состав корма для несушек, можно повысить прочность скорлупы. О том, сколь важен этот вывод для сельского хозяйства, можно судить хотя бы по таким цифрам: только в штате Миннесота ежегодные потери из-за боя яиц превышают миллион долларов. Уж тут никто не скажет, что эта работа ученых «яйца выеденного не стоит».
  • МАГНИЙ И... ИНФАРКТ. Опыты, проведенные венгерскими учеными на животных, показали, что недостаток магния в организме повышает предрасположенность к инфарктам. Одним собакам давали пищу, богатую солями этого элемента, другим - бедную. К концу эксперимента те собаки, в рационе которых было мало магния, «заработали» инфаркт миокарда.
  • БЕРЕГИТЕ МАГНИЙ! Французские биологи считают, что магний поможет медикам в борьбе с таким серьезным недугом XX в., как переутомление. Исследования показывают, что в крови уставших людей содержится меньше магния, чем у здоровых, а даже самые ничтожные отклонения «магниевой крови» от нормы не проходят бесследно.

Важно помнить, что в тех случаях, когда человек часто и по любому поводу раздражается, магний, содержащийся в организме, «сгорает». Вот почему у нервных, легко возбудимых людей нарушения работы сердечных мышц наблюдаются значительно чаще.

  • УГЛЕКИСЛЫЙ МАГНИЙ И ЖИДКИЙ КИСЛОРОД. Большие емкости для хранения жидкого кислорода, как правило, изготовляются в форме цилиндра или шара - чтобы меньше были потери тепла. Но удачно выбранная форма хранилища - это еще не все. Нужна надежная теплоизоляция. Можно в этих целях воспользоваться глубоким вакуумом (как в сосуде Дьюара), можно минеральной ватой, но часто между внутренней к внешней стенкой хранилища засыпают рыхлый порошок углекислого магния. Эта теплоизоляция и дешева, и надежна.

Наименование магнезия встречается еще в Лейденском папирусе, который датируется третьим веком. Дэви в 1808 году, получил небольшое количество нечистого металлического магния, подвергая электролизу белую магнезию. В чистом виде данный металл получил лишь в 1829 годуБусси.

Основной областью применения магния является использование металла в качестве легкого конструкционного материала. Сплавы данного элемента все чаще начинают использоваться в автомобилестроении, полиграфии, текстильной промышленности. Данные сплавы могут использоваться в производстве корпусов автомобильных двигателей, шасси и фюзеляжей самолетов. Магний применяется не в одной лишь авиации, его используют и в изготовления лестниц, грузовых платформ, мостков в доках, подъемников и транспортеров, в производстве оптического и фотографического оборудования.

Огромную роль магний играет в металлургии. Применяется он в качестве восстановителя при производстве некоторых ценных и редких металлов - титана, ванадия, циркония, хрома. Источники электрического тока, созданные на основе магния, отличаются довольно высоким значением удельной энергетической характеристики, высокими разрядными напряжениями.

Магний, как макроэлемент, играет огромную роль в жизнедеятельности, что проявляется в том, что элемент выступает универсальным регулятором физиологических и биохимических процессов в живом организме. Образовывая обратимые связи с огромным количеством органических веществ, магний обеспечивает возможность метаболизма примерно трем сотням ферментов, а именно фосфофруктокиназы, креатинкиназы, аденилатциклазы, ферментов белкового синтеза, K-Na-АТФазы, Са-АТФазы, трансмембранного транспорта ионов, гликолиза, и других. Магний необходим и для поддержания структуры нуклеиновых кислот, некоторых белков и рибосом. Микроэлемент принимает участие в синтезе белка, реакциях окислительного фосфорилирования, образовании фосфатов богатых энергией, в обмене нуклеиновых кислот и липидов.

Биологические свойства

Как известно, в зеленых листьях растений содержатся хлорофиллы. Они являются ничем иным, как магнийсодержащими порфириновыми комплексами, участвующими в фотосинтезе.

Магний, кроме всего прочего, также очень тесно вовлечен в биохимические процессы организмов животных. Для инициирования ферментов необходимы ионы магния, отвечающие за превращение фосфатов, а также для метаболизма углеводов и для переноса нервного импульса. Кроме того, они также участвуют в процессе сокращения мышц, который инициируется ионами кальция.

Магний, как макроэлемент, играет огромную роль в жизнедеятельности, что проявляется в том, что элемент выступает универсальным регулятором физиологических и биохимических процессов в живом организме. Образовывая обратимые связи с огромным количеством органических веществ, магний обеспечивает возможность метаболизма примерно трем сотням ферментов, а именно фосфофруктокиназы, креатинкиназы, аденилатциклазы, ферментов белкового синтеза, K-Na-АТФазы, Са-АТФазы, трансмембранного транспорта ионов, гликолиза, и других. Магний необходим и для поддержания структуры нуклеиновых кислот, некоторых белков и рибосом. Микроэлемент принимает участие в синтезе белка, реакциях окислительного фосфорилирования, образовании фосфатов богатых энергией, в обмене нуклеиновых кислот и липидов.

Магний занимается контролем нормального функционирования миокардиоцитов. Микроэлемент имеет огромное значение регуляции сократительной функции миокарда. Отдельное значение магний имеет в функционировании проводящей системы сердца и нервной системы. Достаточная обеспеченность магнием организма способствует легкой переносимости стрессовых ситуаций, а также подавлению депрессии. Очень важен магний и для метаболизма натрия, кальция, фосфора, витамина С, а также калия. Магний отлично взаимодействует с А-витамином. Так что можно заметить, что магний следит за нормальным функционированием не только отдельных клеток, но и в целом отделов сердца - желудочков, предсердий.

Довольно значительное количество магния содержится в зерновых культурах (мука грубого помола, пшеничные отруби) и в орехах, урюке, кураге, финиках, какао (порошок), сливах (чернослив). Богаты магнием также рыба (особенно лососевые), хлеб с отрубями, соя, орехи, шоколад, арбузы, свежие фрукты (в частности бананы). Магний содержится в крупах (гречневая, овсяная, пшенная), бобовых (горох, фасоль), морской капусте, кальмарах, яйцах, мясе, хлебе (особенно ржаном грубого помола), зелени (шпинате, петрушке, салате, укропе), лимонах, грейпфрутах, миндале, орехах, халве (подсолнечной и тахинной), яблоках.

В организме здорового взрослого человека содержится примерно 140 г магния (что составляет 0,2% от веса тела). Принятой нормой употребления магния для взрослых равна 4 мг/кг. В среднем это составляет для мужчин 350 мг/сут, а для женщин 280 мг/сут. Суточная потребность человеческого организма в магнии составляет около 280-500 мг. Дефицит магния в организме будет вызываться употреблением алкоголя, гипертермией, приемом диуретических препаратов.

Магний является нетоксичным. Доза летального исхода не определена для человека. В результате чрезмерных передозировок соединений магния (например, антацидами) появляется риск отравления. При достижении концентраций магния в крови 15-18% мг наступает наркоз.

При желании можно добывать магний даже из обыкновенного булыжника: каждый килограмм камня, который используется для мощения дорог, содержание магния составляет примерно 20 грамм. Но в таком производстве, правда, нет пока необходимости, т.к. магний, добываемый из дорожного камня, стал бы слишком дорогостоящим удовольствием.

В одном кубическом метре морской воды содержание магния составляет примерно 4 килограмма. В общем же в составе вод мировых океанов растворено более чем 6·10 16 тонн данного химического элемента.

У примерно 90% больных, которые перенесли инфаркт миокарда, выявляют дефицит магния, усиливающийся в самом остром периоде заболевания.

При физических нагрузках потребность человеческого организма в магнии существенно увеличивается, например, у спортсменов во время интенсивных и длительных тренировок, в ходе ответственных спортивных соревнований, при возникновении стрессовых ситуаций. Потеря магния человеческим организмом в подобных ситуациях сопоставима со степенью эмоциональной или физической нагрузки.

Чтобы поджечь магний, нужно просто поднести зажженную спичку к нему, в атмосфере хлора магний начинает греть даже при сохранении комнатной температуры. При сгорании магния начинает выделяться огромное количество тепла и ультрафиолетовых лучей: четыре грамма данного «топлива» хватает для того, чтобы довести до кипения стакан с ледяной водой.

Опыты, которые провели венгерские ученые на животных, дали следующую информацию. Недостаток магния в живом организме повышает предрасположенность существа к инфарктам. Одной части собак давали пищу, которая была богата солями данного элемента, а другим - бедную. В окончании эксперимента собаки, у которых в рационе было слишком мало магния, были поражены инфарктом миокарда.

Магний отвечает за защиту организма от процессов, связанных со старением и заболеваниями.

В экспериментах с пшеничными посевами было отмечено, что влияние экстрасенсов поспособствовало увеличению в семенах количества магния.

Чем большее количество магния содержится в рационе, тем меньшей будет вероятность появления онкологических заболеваний толстой и прямой кишок. Ученые полагают, что данный микроэлемент способен воздействовать на клетки кишечника, при этом они не дают разрастаться и перерождаться им.

Соотношение мужщин иженщин, которые страдают от дефицита магниея, составлят 1:3.

Исследования ученых показали, что каждодневный прием магния в размере 500-700 миллиграмм снижает уровень триглицеридов, а также холестерина в крови. Самым усвояемым препаратом данной области является магния глицинат, всасывание его не находится в зависимости с кислотностью желудка, препарат не не вызывает поносов, раздражает кишечник.

При дефиците магния, организм «забирает» микроэлемент из костей, именно поэтому после длительной недостаточности магния наблюдается сильное отложение солей кальция на стенках артериальных сосудов, в почках и сердечной мышце.

История

Наименование магнезия встречается еще в Лейденском папирусе, который датируется третьим веком. Название происходит, скорее всего, от названия городка на гористом ландшафте Фессалии, от города Магнисия. В древности магнесийским камнем называлась магнитная окись железа, магнесом называли магнит. Данные названия со временем перешли в латинский язык и другие языки.

Вероятнее всего, внешнее сходство пиролюзита (двуокиси марганца) с магнитной окисью железа привело к тому, что магнезийский камень, магнетис и магне стали называнием минералов и руд темно-коричневой и темной окраски, а в последствие так стали называть и другие минералы.

Слово магнес (лат. Magnes) в алхимической литературе означало не одно, а многие вещества, к примеру, гераклийский камень, ртуть, эфиопский камень. Минералы, содержащие магний, также были известны со времен глубокой древности (нефрит, тальк, доломит, асбест и другие) и уже в то время они находили широкое применение.

Но их не считали индивидуальными веществами, было мнение, что это просто видоизменения других, куда более известных минералов, а чаще всего извести. Исследования минеральной воды в Эпсомском источнике в Англии, который был открыт в 1618 г. помогли установить факт того, что в минералах, содержащих магний, а также солях, присутствует особенное металлическое основание.

Грю в 1695 г. из эпсомской воды, горькой на вкус, выделил твердую соль, при этом, указав, что соль эта по своей природе ощутимо отличается от всех иных солей. В XVIII веке многие видные аналитики-химики занимались эпсомской солью, среди них и Блэк, и Бергман, и Нейман и др. После того как были открыты водные источники похожие на Эпсомский, в континентальной Европе, данные исследования стали разворачиваться еще шире.

Вероятнее всего, именно Нейман был первым, кто предложил назвать эпсомскую соль (а это был карбонат магния) не черной (пиролюзит), а белой магнезией. Земля белой магнезии (В то время земля - твердое вещество) (или «Magnesia alba»), у которой было название магнезия, фигурировала в списке простых тел Лавуазье, при этом синонимом данной земли Лавуазье считал "основание эпсомской соли" (или «base de sel d"Epsom»). В российской литературе первой половины XIX века магнезию иногда именовали горькоземом.

Дэви в 1808 году, получил небольшое количество нечистого металлического магния, подвергая электролизу белую магнезию. В чистом виде данный металл получил лишь в 1829 году Бусси. Сначала Дэви предложил называть новый элемент и новый металл магнием (лат. Magnium), но ни в коем случае не магнезией, которая в те времена означала металлическое основание пиролюзита (лат. Magnesium).

Тем не менее, после того, как название черной магнезии со временем изменили, Дэви все-таки предпочел снова называть металл магнезием. Хотелось бы отметить тот факт, что первоначально название «магний» уцелело лишь в русском языке, произошло это лишь благодаря учебнику Гесса. Ученые начала XIX века предлагали еще несколько различных вариантов названия, например, магнезий, горькоземий (Щеглов), магнезь (Страхов).

Нахождение в природе

Земная кора довольно богата магниемсодержание в ней магния составляет более 2,1% по массе. Всего лишь 6 элементов периодической системы химических элементов Дмитрия Ивановича Менделеева встречаются на нашей планете чаще, чем магний. Магний находится в составе около двух сотен минералов. А вот получают его по большей части всего из трех - карналлита, магнезита и доломита.

Магний присутствует в горных кристаллических породах в форме нерастворимого карбоната или сульфата, кроме того, (но в куда менее доступном виде) в форме силикатов. Оценка общего содержания магния в огромной степени зависит от используемой на практике геохимической модели, а конкретно, от весового отношения осадочных и вулканических горных пород. На данный момент используют значения 2% -13,3%. Скорее всего, самым приемлемым считается значение 2,76%, ведь оно ставит магний шестым по распространенности после кальция, которого (4,66%) и перед калием (1,84%) и натрием (2,27%).

В Российской Федерации находятся богатейшие месторождения магнезита, которые располагаются в Оренбургской области (Халиловское) и на Среднем Урале (Саткинское месторождение). В районе г. Соликамска разрабатывают самое крупное во всем мире месторождение одного из важнейших магниевых минералов - карналлита. Доломит считается самым распространенным магнийсодержащим минералом, наиболее часто встречается он в Московской и Ленинградской областях, Донбассе, а также многих других местах.

Существенные просторы суши, как, например, Доломитовые Альпы на территории современной Италии, состоят по большей части из минерала под названием доломит MgCa(CO3)2. В таких местах можно повстречать в том числе и осадочные минералы магния: карналлит K2MgCl4·6H2O, магнезит MgCO3, лангбейнит K2Mg2(SO4)3, эпсомит MgSO4·7H2O.

Огромные запасы магния присутствуют в воде океанов и морей, а также в составе природных рассолов. В некоторых государствах именно эти воды и выступают важнейшим сырьем при получении магния. Среди всех металлических элементов по содержанию в воде морей и океанов магний уступает лишь натрию. В одном кубическом метре морской воды присутствует примерно четыре килограмма магния. Магний присутствует и в пресной воде, наряду с кальцием обусловливая ее жесткость.

Важнейшими видами нахождения магниевого сырья выступают:

  • - морская вода — (Mg 0,12-0,13 %)
  • - бишофит - MgCl2 . 6H2O (Mg 11,9 %)
  • - карналлит - MgCl2 KCl 6H2O (Mg 8,7 %)
  • - брусит - Mg(OH)2 (Mg 41,6 %).
  • - эпсомит - MgSO4 7H2O (Mg 16,3 %)
  • - кизерит - MgSO4 H2O (Mg 17,6 %)
  • - каинит - KCl MgSO4 3H2O (Mg 9,8 %)
  • - доломит - CaCO3·MgCO3 (Mg 13,1 %)
  • - магнезит - MgCO3 (Mg 28,7 %)

Магнезиальные соли в огромнейших количествах встречаются среди солевых отложений самосадочных озёр. Во многих странах известны месторождения карналлита - ископаемых осадочных солей.

Магнезит преимущественно образуется в гидротермальных условиях, он относится к гидротермальным месторождениям со средней температурой. Доломит тоже является очень важным магниевым сырьём. Доломитовые месторождения доломита распространены, а их запасы огромны. Их часто ассоциируют с карбонатными толщами, большинство из которых имеет пермский или докембрийский возраст. Залежи доломита формируются осадочным путём, но они могут возникать и при воздействии гидротермальных растворов на известняки, а также поверхностных или подземных вод.

Типы месторождений магния

  • - Морская вода
  • - Ископаемые минеральные отложения (калийно-магнезиальные и магнезиальные соли)
  • - Природные карбонаты (магнезит и доломит)
  • - Рассолы (рапа из соляных озёр)

Применение

Магний является самым легким конструкционным материалом, используемым в промышленных масштабах. Плотность магния (1,7 г/см3) равна менее чем двум третьим плотности алюминия. Магниевые сплавы весят в четыре раза меньше стали. Кроме всего прочего, магний отлично поддается обработке, а также может быть отлит или переделан любыми из стандартных методов металлообработки (штамповка, прокатка, волочение, ковка, клепка, сварка, пайка). Именно поэтому основной областью применения магния является использование металла в качестве легкого конструкционного материала.

Наиболее широко применяют сплавы магния с марганцем, алюминием и цинком. Каждый компонент данного ряда вносит собственный вклад в обобщающие свойства сплава: цинк и алюминий способны сделать сплав более прочным, марганец повышает антикоррозионные свойства сплава. Магний делает сплав легким, детали, выполненные из магниевого сплава, на 20%-30% легче, чем алюминиевые и на 50%-75% легче, чем чугунные и стальные детали. Сплавы данного элемента все чаще начинают использоваться в автомобилестроении, полиграфии, текстильной промышленности.

Сплавы на основе магния, как правило, содержат долю магния более 90%, кроме того от 2% до 9% алюминия, от 1% до 3% цинка и от 0,2% до 1% марганца. При высокой температуре (примерно до 450° С) заметно улучшается прочность сплава в процессе сплавления с редкоземельными металлами (к примеру, неодимом и празеодимом) либо торием. Данные сплавы могут использоваться в производстве корпусов автомобильных двигателей, шасси и фюзеляжей самолетов. Магний применяется не в одной лишь авиации, его используют и в изготовления лестниц, грузовых платформ, мостков в доках, подъемников и транспортеров, в производстве оптического и фотографического оборудования.

Магниевые сплавы находят широкое применение в самолетостроении. В далеком 1935 году в Советском Союзе был сконструирован самолет «Серго Орджоникидзе», который почти на 80% состоял из магниевых сплавов. Данный самолет успешно выдерживал все испытания, он долгое время эксплуатировался в тяжких условиях. Ядерные реакторы, ракеты, детали моторов, баки для масла и бензина, корпуса легковых автомобилей, вагонов, автобусов, колеса, отбойные молотки, маслопомпы, пневмобуры, кино- и фотоаппараты, бинокли — все это краткий перечень деталей, приборов и узлов, при изготовлении которых используются магниевые сплавы.

Огромную роль магний играет в металлургии. Применяется он в качестве восстановителя при производстве некоторых ценных и редких металлов - титана, ванадия, циркония, хрома. Если ввести магний в расплавленный чугун, чугун сразу модифицируется, т.е. улучшается его структура и повышаются механические свойства. Из такого модифицированного чугуна можно изготавливать отливки, которые с успехом заменят стальные поковки. В металлургии магний используется для раскисления сплавов и стали.

Многие соединения магния также находят широкое применение, особенно это касается его оксида, сульфат и карбонат.

Магний в форме чистого металла и его химические соединения (перхлорат, бромид) применяют в производстве очень мощных электрических резервных батарей (к примеру, серно-магниевый элемент, магний-перхлоратный элемент, хлористомедно-магниевый элемент,магний-ванадиевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент и т.д.), а также сухих элементов (висмутисто-магниевый элемент, марганцево-магниевый элемент и др). Источники электрического тока, созданные на основе магния, отличаются довольно высоким значением удельной энергетической характеристики, высокими разрядными напряжениями. В последнее время в ряде государств обострилась проблема создания аккумуляторной батареи с большим сроком эксплуатации, т.к. эмпирические данные позволили утверждать, что огромные перспективы широкого его использования (доступность сырья, высокая энергия, экологичность) предоставляет магний.

Производство

Металлический магний получают двумя способами: электролитическим и электротермическим (либо металлотермическим). Как следует из названий методов, в обоих процессах присутствует электрический ток. Но во втором случае роль электричества сводится лишь к обогреванию реакционных аппаратов, восстанавливают же окись магния, которая была получена из минералов, одним из восстановителей, к примеру, алюминием, углем, кремнием. Данный метод довольно перспективен, в последние годы он все большее находит свое применение. Тем не менее, основным промышленным способом получения магния остается первый, т.е. электролитический.

Магний в больших количествах производится путем электролиза расплава смесей хлоридов магния, натрия и калия либо кремнийтермическим восстановлением. В электролитическом процессе используется либо безводный расплавленный хлорид магния MgCl2 (при температуре 750° С), либо (при более низкой температуре) хлорид магния, частично гидратированный и выделенный из морской воды. Процент содержания хлорида магния в данном расплаве составляет около 5-8%. Вместе со снижением концентрации уменьшается и выход магния по электрическому току, при повышении концентрации – увеличивается расход потребляемой электроэнергии. Процесс проходит в специально подготовленных ваннах-электролизерах. На поверхность ванны всплывает расплавленный магний, а оттуда его выбирают вакуум-ковшом время от времени, ну а затем разливают магний по формам.

После всего этого магний очищают при помощи переплавки с флюсами, а также зонной плавкой либо возгонкой в вакууме. Есть возможность магний двумя путями: возгонкой в вакууме или переплавкой и флюсами. Смысл последнего метода является общеизвестным: флюсы, т.е. специальные добавки, взаимодействуют с примесями, в результате превращают их в соединения, легко отделяемые механическим путем от металла. На а вакуумная возгонка, т.е. первый способ, требует куда более совершенной аппаратуры, однако с помощью данного метода можно получать намного более чистый магний.

Возгонка ведется в специальных аппаратах под вакуумом, это стальные цилиндрические реторты. «Черновой», т.е. прошедший первичную обработку металл помещается на дно такой реторты, затем ее закрывают, после чего выкачивают воздух. После этого нагревают нижнюю часть реторты, в это время верхняя часть на протяжении всего времени охлаждается при помощи наружного воздуха. Действие высокой температуры сказывается на том, что магний начинает возгоняться, т.е. переходить в газообразное состояние, при этом вещество минует жидкое состояние. Пары магния поднимаются и начинают конденсироваться на холодных стенках в верхней части реторты. Данный метод позволяет получать особенно чистый металлический магний, содержание магния в котором превышает 99,99%.

Термические способы получения магния требуют в качестве сырья доломит либо магнезит, из которых при помощи прокаливания получается оксид MgO. Во вращающихся или ретортных печах с угольными или графитовыми нагревателями данный оксид восстанавливается кремнием до металла (при силикотермическом способе) либо до Са2 (при карбидотермическом способе) на температуре 1280-1300°С, или углеродом (при карботермическом способе) на температуре свыше 2100 °С. В последнем карботермическом способе (MgO + С = Mg + CO) образуется смесь угарного газа и паров магния, которую быстро охлаждают инертным газом во время выхода ее из печи для того, чтобы предотватить обратную реакцию магния с угоарным газом (СО).

Физические свойства

Магний представляет собой блестящий серебристо-белый металл, пластичный и ковкий, сравнительно мягкий. Прочность и твердость магния для литых образцов минимальны по распространенности, более высоки для прессованных образцов. Магний практически в пять раз легче, чем медь и в четыре с половиной раза легче, чем железо. Даже, как его называют, «крылатый» металл алюминий в полтора раза тяжелее, чем магний.

Температура плавления у магния не так высока, как у некоторых других металлов и составляет всего 650°С, однако расплавить магний в обычных условиях довольно трудно: при нагревании в атмосфере воздуха до температуры 550 °С, магний вспыхивает и незамедлительно сгорает очень ярким ослепительным пламенем (данной свойство магния очень широко используется в изготовлении предметов пиротехники). Чтобы поджечь данный металл, нужно просто поднести зажженную спичку к нему, в атмосфере хлора магний начинает греть даже при сохранении комнатной температуры. При сгорании магния начинает выделяться огромное количество тепла и ультрафиолетовых лучей: четыре грамма данного «топлива» хватает для того, чтобы довести до кипения стакан с ледяной водой.

Металлический магний имеет гексагональную кристаллическую решетку. Температура кипения магния равна 1105°C, плотность металла составляет 1,74 г/см3 (таким образом, магний является очень легким металлом, легче которого лишь кальций, а также щелочные металлы). У магния стандартный электродный потенциал Mg/Mg2+ -2,37В. Среди ряда стандартных потенциалов располагается он перед алюминием и за натрием. Атомный радиус магния 1,60Å, а ионный радиус составляет Mg2+ 0,74Å.

Поверхность магния всегда покрыта плотной оксидной пленкой оксида MgO, которая при обычных условиях защищает металл от разрушения. Лишь при нагревании до температуры свыше 600°C он начинает гореть на воздухе. Магний горит испуская яркий свет, который по своему спектральному составу близок к солнечному. Именно поэтому фотографы при недостаточной освещенности раньше проводили съемку на свету горящей магниевой ленты.

Теплопроводность металла при комнатной температуре 20 °C составляет 156 Вт/(м.К). Высоко чистый магний пластичен, он хорошо прессуется, металл отлично поддается обработке резанием и прокатывается. Удельная теплоемкость металла (при комнатной температуре 20 °С) составляет 1,04·103 дж/(кг·К), или 0,248 кал/(г·°С).

У магния показатель термического коэффициента линейного расширения (интервал от 0 до 550 °С) определяется уравнением 25,0·10-6 + 0,0188 t. Металл обладает удельным электрическим сопротивлением (при комнатной температуре 20 °С) равным 4,5·10-8 ом·м (4,5 мком·см). Магний является парамагнитным металлом, его удельная магнитная восприимчивость составляет +0,5·10-6.

Магний это относительно пластичный и мягкий металл, механические свойства магния во многом зависимы от способа обработки данного металла. К примеру, при комнатной температуре 20 °С свойства соответственно деформированного и литого магния можно охарактеризовать следующими показателями: твердость по Бринеллю 35,32·107 н/м2(30 и 36 кгс/мм2) и 29,43·107, предел текучести8,83·107 н/м2 (2,5 и 9,0 кгс/мм2) и 2,45·107, предел прочности 19,62·107 н/м2(11,5 и 20,0 кгс/мм2) и 11,28·107, относительное удлинение 11,5% и 8,0.

Давление паров магния (в мм.рт.ст.) составляет:

  • - 0,1 (при температуре 510°C)
  • - 1 (при температуре 602°C)
  • - 10 (при температуре 723°C)
  • - 100 (при температуре 892°C)
Удельная теплоемкость магния при постоянном давлении составляет (в Дж/г·K):
  • - 0,983 (при температуре 25°C)
  • - 1,6 (при температуре 100°C)
  • - 1,31 (при температуре 650°C)

Стандартная энтальпия образования равна ΔH (298 К, кДж/моль): 0 (т), а стандартная энергия образования Гиббса составляет ΔG (298 К, кДж/моль): 0 (т). Стандартная энтропия S образования имеет занчение(298 К, Дж/моль·K): 32,7 (т), тогда как стандартная мольная теплоемкость магния Cp (298 К, Дж/моль·K) рана 23,9 (т). Энтальпия плавления металла ΔHпл (кДж/моль) равна 9,2, а энтальпия кипения ΔHкип (кДж/моль) равна 131,8.

Химические свойства

Поверхность магния всегда покрыта плотной оксидной пленкой оксида MgO, которая при обычных условиях защищает металл от разрушения. Лишь при нагревании до температуры свыше 600°C он начинает гореть на воздухе. Магний горит испуская яркий свет, который по своему спектральному составу близок к солнечному. Именно поэтому фотографы при недостаточной освещенности раньше проводили съемку на свету горящей магниевой ленты. В процессе сгорания магния на воздухе, начинает образовываться белый рыхлый порошок оксида MgO:
  • 2Mg + O2 = 2MgO.
Вместе с оксидом начинает образовываться нитрид магния Mg3N2:
  • 3Mg + N2 = Mg3N2.
Магний не реагирует с холодной водой (точнее, реагирует крайне медленно), а вот с горячей водой вступает во взаимодействие, образуя белый рыхлый осадок гидроксида Mg(OH)2:
  • Mg + 2H2O = Mg(OH)2 + H2.
Если поджечь ленту магния и опустить ее в стакан с водой, горение металла все равно продолжается. При этом водород, выделяющийся в результате взаимодействия с водой магния, на воздухе тут же загорается. Магний может гореть и в углекислом газе:
  • 2Mg + CO2 = 2MgO + C.

Способность магния продолжать гореть как в атмосфере углекислого, так и в воде, очнь сильно усложняет попытки тушения пожаров, в которых начинают гореть конструкции, выполненные из магния либо его сплавов.

MgO - оксид магния, представляет собой рыхлый белый порошок, который не реагирует с водой. Когда-то он назывался жженой магнезией либо просто магнезией. Данный оксид обладает важнейшими свойствами, он вступает в реакцию с самыми разными кислотами, к примеру:

  • MgO + 2HNO3 = Mg(NO3)2 + H2O.
Основание, отвечающее данному оксиду Mg(OH)2 — основание средней силы, но практически нерастворимо в воде. Получить его можно, например, при добавлении щелочи в раствор одной из солей магния:
  • 2NaOH + MgSO4 = Mg(OH)2 + Na2SO4.

Т.к. оксид магния во взаимодействии с водой не образует щелочей, а основание Mg(OH)2 не обладает щелочными свойствами, магний не относится к щелочноземельным металлам, в отличие от таких элементов своей группы, как кальций, стронций барий.

Металлический магний реагирует с галогенами в комнатной температуре, к примеру, с бромом:

  • Mg + Br2 = MgBr2.
После нагревания магний вступает в реакцию с серой, образуя при этом сульфид магния:
  • Mg + S = MgS.
Если смесь кокса и магния прокаливать в инертной атмосфере, образуется карбид магния, состав которого Mg2C3 (нужно отметить, ближайший «групповой» сосед магния, т.е. кальций, образует в аналогичных условиях карбид с составом СаС2). В процессе разложения карбида магния водой образовывается пропин - гомолог ацетилена (С3Н4):
  • Mg2C3 + 4Н2О = 2Mg(OH)2 + С3Н4.

Именно поэтому Mg2C3 часто называют пропиленидом магния.

Поведение магния имеет сходные черты с поведением такого щелочного металла, как литий (например, диагональное сходство элементов в таблице Дмитрия Ивановича Менделеева). Как, магний, так и литий, реагируют с азотом (у магния реакция с азотом идет после нагревания), а в результате следует образование нитрида магния:

  • 3Mg + N2= Mg3N2.
Нитрид магния, также как нитрид лития, с легкостью разлагается водой:
  • Mg3N2 + 6Н2О = 3Mg(ОН)2 + 2NН3.

У магния сходство с литием проявляется еще и в том, что карбонат магния MgCO3 и фосфат Mg3(PO4)2 магния в плохо растворимы воде, точно также, как и соли лития, соответствующие данным соединениям.

Магний сближает с кальцием то, что присутствие растворимых гидрокарбонатов данных элементов в воде влияет на жесткость воды. Жесткость, которая вызвана Mg(HCO3)2 - гидрокарбонатом магния является временной. В процессе кипячения гидрокарбонат магния разлагается, в результате чего выпадает в осадок основной его карбонат - (MgOH)2CO3 - гидроксокарбонат магния:

  • 2Mg(HCO3)2 = (MgOH)2CO3 + 3CO2 + Н2О